我们报告了一个由无限层镍元的启发的决定性量子蒙特卡洛研究,重点是层间杂交在3 d x 2-2-y 2轨道之间的影响,该杂交源自ni(或ni和o)在一个层中源自ni(或ni和o),在一个层和稀有(r)5 d orbitals in ni层中,ni and ni and and and and the ni and the and and and and and and and and and and libit。对于平均两层之间共有一个电子的填充,层间杂交会导致Ni层中的“自掺杂”孔,并且缺乏抗磁磁体排序,而是旋转密度和电荷密度条纹状状态的外观。随着层间杂交的增加,Ni和R层都会产生抗铁磁相关性,即使两个单独的层都远离半填充。用于中间范围内的杂交,大致可与内部的邻居跳跃跳跃t ni相提并论,该模型会形成近核样物理的特征。
排斥性费米克哈伯德模型(FHM)对于我们对强相关材料中电子行为的理解至关重要。在半纤维上,其基态的特征是抗铁磁相,它让人联想到高温丘脑超导体中的母体状态。将掺杂剂引入抗磁铁中,费米子哈伯德(FH)系统被认为会产生各种异国情调的量子阶段,包括条纹顺序,伪模和D-Wave超导性。然而,尽管在FHM的量子模拟中取得了显着进步,但在大规模量子模拟器中实现了低温抗铁磁相变的效果仍然难以捉摸。在这次演讲中,我将在三个维度上介绍低温排斥FH系统的最新进展,其中包括大约800,000个位点的均匀光学晶格中的锂6原子。使用旋转敏感的bragg衍射,我们测量系统的自旋结构因子(SSF)。我们通过调整相互作用强度,温度和掺杂浓度来观察SSF中的分歧,以在相变的各自临界值中,这与Heisenberg普遍性类别中的幂律相一致。我们的结果成功证明了FHM中的抗铁磁相变,为探索FHM的低温相图铺平了道路。
