根据图中所示的数据分析4,计算模式tm 0的横向磁场,用于周围的介质折射率等于1在波长450、510、570和630 nm处,涵盖了LMR位于不同中间层厚度值的范围:0,150,150,150,150,350,350,350,550,700,700,850和1000 nm nms1)。对于模拟,我们使用了带有准2D版本的FimMave软件中实现的有限差异方法(FDM)。,由于它在接口上是连续的,因此比电场更容易解释,因此我们专注于横向磁场的分析。
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
本文研究了银纳米粒子掺杂的 PMMA–ZrO 2 纳米复合材料的结构和光学特性。将银纳米粒子以 2、4 和 6 wt.% 的浓度添加到 PMMA–ZrO 2 纳米复合材料中。实验结果表明,随着银纳米粒子浓度的增加,PMMA–ZrO 2 纳米复合材料的吸收系数、消光系数、折射率、介电常数和光导率均增加,而透射率和能带隙均降低。结构和光学特性的结果表明,PMMA/ZrO 2 /Ag 纳米复合材料可用于不同的医疗和工业应用,例如太阳能电池、二极管、传感器、紫外线探测器等。
这些笔记中涵盖的主题呈现出不同级别的细节和数学严格的层次。讲座1介绍了后来讲座中考虑的几种拓扑绝缘子模型,并简要描述了关注的主要主题:不对称运输。讲座2的重点是从更多的显微镜描述中衍生宏观部分差分模型。讲座3至5个分析,用于磁性绝缘体的磁性schr odinger和狄拉克模型。这些笔记的核心是讲座6至10的材料。不对称转运首先在一维环境中考虑。然后,二维哈密顿量由一般的伪差异操作员进行建模,由域壁扩展进行分类,并以弗雷德霍尔姆操作机的边缘电导率和折射率的形式分配了几种等效的拓扑,均由Fredholm Opera tork的折叠式和折射率分配。讲座11和12描述了散装不同不变的概念,并调查了几个不变性的定义和计算,包括地图,绕组数字和Chern数字。第13节提出了界面传输问题作为整体方程的重新印象。这使我们能够对界面传输进行准确的数值模拟,并验证拓扑不变的鲁棒。讲座14将这些讲座中开发的理论应用于门控扭曲的双层石墨烯的分析。
摘要我们报告了二氧化硅(SOS)晶状体上掺杂Erbium掺杂的平面波导的制造和表征,可提供低损耗和适用于用于工程光波导放大器(1530-1565 nm)的光纤维通信的较低的光限制。在这里,我们描述了一种超快的血浆掺杂(ULPD)技术,该技术是使用由飞秒激光(波长800 nm)诱导的血浆进行的,其重复速率为10 kHz,脉冲持续时间为45 fs。此处介绍的ULPD方法已成功应用于先前使用脉冲持续时间约为100 fs且重复速率为1 kHz的FS-LASER掺杂在SOS底物上的稀土材料。已经分析了厚度,折射率,光学传播损失,光致发光强度和光致发光寿命的厚度,折射率损失,光发光损失,光发光损失,光发光损失,光致发光的寿命。我们报告了C波段中<0.4dB/cm的低传播损失,长寿命为13.21 ms,在1532 nm和最大的寿命密度产物6.344 x10 19 s.cm -3。低损耗平面平板波导和高寿命密度的产品有望在SOS平台上制造带状的波导的进一步可能性。所提出的主动波导制造方法可能对制造平面的集成光学波导放大器和与基于硅的光子积分电路兼容的激光。
摘要:由于可调的折射率和无定形和晶体材料状态之间的可调折射率和电导率,对神经形态应用,内存计算和光子积分的生动兴趣引起了人们的生动兴趣。尽管如此,缩小常规溅射PCM内存阵列的设备尺寸,限制了PCM技术在大众应用中的实现,例如消费电子等,这是越来越具有挑战性的。在这里,我们报告了亚10 nm cu-ge-te(CGT)纳米颗粒的合成和结构研究,作为低成本和超级PCM设备的合适候选物。我们表明,我们的合成方法可以准确控制CGT胶体的结构,例如组成调节的CGT无定形纳米颗粒以及具有三角形α -Gete和Tetragonal Cu 2 Gete 3 Gete 3阶段的结晶CGT纳米颗粒。原位表征技术,例如高温X射线衍射和X射线吸收光谱,表明Gete中的Cu掺杂可改善纳米粒子的热性能和无定形相位稳定性,除了纳米级效应,还可以增强CGT Nanoparticles的非差异特征。此外,我们证明了CGT纳米颗粒的薄膜制造,并通过光谱椭圆测量表征其光学特性。我们揭示CGT纳米颗粒薄膜表现出负反射率的变化,并且在近IR频谱中具有良好的反射率对比。■简介我们的工作促进了将PCM以纳米颗粒形式使用的可能性,例如电流开关设备,金属镜,反射率显示和相变IR设备。
摘要纳米钻阵列与光电探测器的组合可以成为SI平台上大规模制造微型和具有成本效益的折射率传感器的策略。然而,互补的金属 - 氧化物 - 血管导体(CMOS)制造过程尤其是在可用于制造结构的材料上的限制。在这里,我们专注于使用CMOS兼容的过渡金属氮化钛(TIN)来制造纳米孔阵列(NHAS)。我们研究了使用高精度工业工艺制造的锡NHA的光学性质(50 nm,100 nm和150 nm),用于在集成的等离子,等离子折射指标传感器中使用。反射率测量显示出明显的Fano形共振,共振长度在950至1200 nm之间,这可以归因于通过NHA的非凡光学传输(EOT)。使用测量的材料介电常数作为输入,测得的光谱是通过具有很高准确性的模拟来重现的:模拟和测量的共振波长偏离小于10 nm,平均在30°和40°°的发病角度下观察到的平均4 nm偏差为4 nm。我们的实验结果表明,锡层从50到150 nm的厚度增加导致灵敏度从614.5 nm/riU增加到765.4 nm/riU,我们将其归因于具有空间扩展SPPS的孔中的单个LSPR之间的强耦合。我们的结果可用于提高锡NHA在片上等离子折射率传感器中的应用。
通过纳米级天线将电磁能与亚波长的体积结合起来,可用于增强量子发射器的自发发射。以此目的,已经探索了金属和高折射率介电纳米颗粒的不同配置。在这里,我们对三种不同参数的平面金属,高折射率介电和混合纳米antennas进行了比较分析:purcell因子增强,辐射效率和方向性特性。我们将研究重点放在圆柱体二聚体的不同几何和材料组合上。由两种金纳米固定器制成的二聚体是改善自发发射的最有前途的候选者。虽然大多数以前的作品都关注纳米颗粒平面中散射发射的重定向,但我们提出的两个大金缸(r =λ / 4)的纳米结构将大部分辐射向上发射。这种效果是由于对谐振模式的强大四极电贡献。旨在进一步提高方向性特性,将其他硅纳米固定器用作散射辐射的董事,相对于没有董事的金二聚体,将方向性提高了2.4。总的来说,提出了由金二聚体和硅纳米颗粒组成的杂种结构,以增强单个量子点的自发发射并控制其发射模式。这项工作中显示的结果可能是有用的荧光增强或量子光子学中的。它们对于基于量子点和其他纳米级发射器的单光子来源的开发特别有趣。
紧凑型和高速电光调节器在各种大规模应用中起着至关重要的作用,包括光学计算,量子和神经网络以及光通信链路。常规的电折射量器调节剂Suchassilicon(SI),III-VandGrapaPheneSissufferFromaFundAmentalTradeOffbetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetbetBetBetBetBetBetBetBetBetbetBetBetBetBetBetWeendevicElength和光损失限制了他们的缩放功能。高插条环谐振器被用作合并强度调节器,但是由于与相移相关的高插入损失,它们对相位调制的使用受到限制。在这里,我们表明,高核谐振器可以通过同时调制折射率的真实和虚构部分,从而在相同的程度上,即1 N
在第三次修订中,删除了 2 级,因为全世界大多只生产一种等级,现有等级的苯乙烯要求修改为 99.7%(质量百分比)。修改了颜色、含量和硫含量的测定方法。此外,还纳入了用于测定相对密度、折射率、凝固点、醛、氯化物、抑制剂含量、聚合物含量和过氧化物的替代试验方法。苯具有致癌性,是苯乙烯中的杂质,委员会决定将苯作为特征,限量为 1 ppm。聚合物溶解度的要求已被删除,因为它已经以杂质的形式计算。
