b - 环氧乙烷)和聚(苯乙烯- b - 甲基丙烯酸甲酯)。5-7 据报道,这些 BCP 的最小层状畴间距分别为 16 nm 和 17.5 nm 全螺距。8,9 为了进一步将此限制缩小到 10 nm 以下的域大小,已报道了基于使用高 χ 嵌段的各种策略。例如,Jo 等人报道了含有半螺距为 5 nm 的 BCP 的三氟乙基丙烯酸酯本体薄膜,10 而 Hancox 等人建议使用氟化长链引发剂作为第一个嵌段来合成极性聚(丙烯酸),其呈现 3.8 nm 半螺距的层状形态。11 此外,Woo 等人报道了在 PS 和 PMMA 嵌段之间使用短甲基丙烯酸嵌段来获得亚 10 nm 域。12
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
摘要 在过去的 60 年里,媒体一直在报道人工智能 (AI) 和自动化等新兴技术。这项国家级研究希望对美国报纸如何报道这些技术进行细致的概述。首先,对 1985 年至 2020 年《纽约时报》和《华盛顿邮报》上有关人工智能和自动化的文章进行了潜在狄利克雷分配 (LDA) 主题建模。其次,进行了归纳性手动框架分析,以区分两家报纸随时间推移应用的框架。主题建模的结果表明,关于人工智能和自动化的文章在“工作”、“艺术”和“教育”中最为突出。关于手动框架分析,随着时间的推移,报道更加乐观而不是悲观。然而,当考虑反乌托邦框架时,结果显示,语料库中对人工智能和自动化对这些技术所涉及的道德难题的影响的关注度更高。
自去年UNGA以来,以色列在加沙使用军事AI工具的报道表明,由于寻求通过AI和自动化提高暴力速度而造成的毁灭性和不可接受的伤害,从而侵蚀了有意义的人类控制和武力使用中的决策,以及将人们减少到数据点上。同时,对军事国家对自主武器进行投资的投资的报道表明,各州已经在寻求通过提高武器系统的自治权来竞争军事优势。
·自2024年11月8日上次更新以来,截至2024年12月12日,已有150个MPOX案件报道了14个欧盟/EEA国家/地区:德国(51),西班牙(43),西班牙(43),荷兰(20),荷兰(7),奥地利(7),法国(5),Greece(5),Greece(5),Greece(5),Greece(5),爱尔兰(4),ITALY(4),ITALY(3) (2),保加利亚(1),克罗地亚(1)和斯洛伐克(1)。自2024年11月8日以来,没有任何新国家报告确认的案件。·自MPOX爆发开始以来,截至2024年12月12日,已有29个EU/EEA国家据报道23 478个确认的MPOX案件(MPX)。·在2024年11月,与10月相比,MPOX案件增加了2.7%(在10月份报道的150例案件与9月份报道的146例病例)。·与男性发生性关系并且更广泛的欧盟/EEA人口非常低的男性,感染的总体风险仍然很低。
成功检测和预防脑损伤取决于与潜在病理相关的细胞损伤阈值的定量识别。在此,通过将最近开发的惯性微神经流变性技术与3D体外神经组织模型相结合,我们可以量化和解决高负载速率的神经细胞的结构病理学和关键损伤应变阈值,例如在BLAST,气腔,气液或定向能量导管中遇到的高负载率。我们发现,以MAP2为特征的神经元树突状棘显示为7.3%的物理衰竭菌株,而微管和纤维肌动蛋白能够在受伤前耐受耐受的菌株(14%)。有趣的是,尽管这些关键损伤阈值与以前报道的中等和较低应变率报道的文献值相似(<100 1/s),但此处报道的原发性损伤的病理学与凋亡或坏死过程中的生物化学激活相比纯粹是物理性质的明显不同。