抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
摘要 - 主题建模是一种广泛使用的技术,用于从未标记的文本数据中提取隐藏的模式,从而促进了各种功能,例如文档组织,内容建议和检索。尽管传统上应用于英语文本,但主题建模最近在其他语言中获得了吸引力,包括孟加拉语,这是由于孟加拉语内容在线的日益增长的驱动而驱动。最近的研究已将某些主题建模方法应用于孟加拉语,但其在绩效方面的有效性尚未得到充分影响。本文介绍了Bert-LDA(一种混合主题建模的方法),应用于孟加拉新闻语料库,其中包括从在线孟加拉新闻门户收集的各种类别的文章。潜在的dirichlet分配(LDA)是一个概率模型,将每个文档表示为主题的混合,而Bert-LDA则利用了Bert上下文嵌入的语义丰富,结合了LDA的强大主题建模功能。通过整合两种方法的优势,我们的方法旨在提高本伽利文本主题建模的性能。实验结果表明,所提出的BERT-LDA模型始终优于各种评估指标的传统主题建模技术,从而在从孟加拉语文本数据中提取有意义的见解方面有了重大改进。
我们比较了开放量和封闭式LLM的性能,例如Llama-3和GPT-4与跨孟加拉语下流任务的微调编码器模型,包括翻译,摘要,汇总,释义,问答,提示和自然语言的推流。我们的发现表明,尽管LLM通常在执行任务方面表现出色,但它们在重新制定孟加拉语脚本生成的任务中的表现却是不明智的。关键挑战包括现有LLM对孟加拉脚本的效率低下,从而导致计算成本增加和潜在的性能退化。加法 - 我们重点介绍了通常用于孟加拉NLP任务的机器翻译数据集中的偏差。我们得出的结论是,孟加拉国面向的LLM非常需要,但是该领域通常缺乏为降低一个高效模型所需的高质量预科和指导调整数据集。*