基础消防员课程 亲爱的医生: 您正在检查的个人已申请入读红杉学院的消防员课程。作为录取过程的一部分,学生必须获得医疗许可才能参加消防员课程的体能训练计划。体能训练计划包括某些体能表现测试和剧烈的体能训练计划。体能训练每天至少进行一 (1) 小时,每周三天,至少持续十四 (14) 周。下面列出了体能表现测试和体能训练计划内容的描述。个人已完成病史声明和心脏病风险评估 (PAR-Q),以帮助您确定个人是否适合参加训练计划。体能表现测试 防火庇护所部署(计时 30 秒):个人使用 3 种方法部署野外防火庇护所,同时佩戴全套野外安全装备。时间事件模拟个人在火线上可能遇到的实际紧张情况。拾起、携带、抬起、攀爬和放下铝制实心梁 20 英尺三节伸缩梯(计时 4 分 15 秒):个人在佩戴结构安全装备时执行考试中涉及的方法。使用躯干、手臂、腿部和背部的动态肌肉耐力。穿戴个人防护服(野外和结构):个人穿戴安全服和设备模拟实际紧张情况/计时事件。各种带电消防水带演进(计时事件):连接、拖动和操作充满电的消防水带。 (100 英尺 1 &1/2" 软管包含 9 加仑水,每加仑重 8.34 磅 = 每 100 英尺部分重 75 磅)最多可使用三 (3) 根软管,可由一个人或三个人使用。使用手臂、腿和背部。野火手线建造:使用手动工具在模拟火灾区域的矿物土壤中建造防火线,同时穿戴全套安全装备。使用背部、手臂、腿。
56986 - JMP 16® 数据可视化、探索和发现软件 开始日期:2021 年 6 月 22 日 开始时间:美国东部时间下午 4:00 结束时间:美国东部时间下午 4:50 作者:Thomas A. Donnelly 博士 摘要:这是 JMP® 软件将动态数据可视化和分析引入桌面的第 32 年。此演示将使用简短的案例研究来重点介绍 JMP 中强大的数据可视化功能,例如地图上的动画数据(现在可以记录为 GIF)、包括数据表中的图像、非结构化文本数据的分析、传感器数据流的分析(功能数据分析)以及展示 JMP 16 中的增强功能。使用新的 Graphlet 和悬停标签,可以直观地深入查看数据层次结构(例如工作分解结构 (WBS)),以查看每个步骤的图形摘要。在几分钟内完成电子表格程序中需要数小时才能完成的工作。JMP 减少了数据清理的繁琐工作 - 包括异常值检测、输入缺失数据和重新编码混乱数据。单击并拖动变量、添加数据过滤器、图像、地图和动画时,可以立即看到图形出现。几乎可以从任何地方获取数据 - Excel、数据库、文本、互联网或 JMP 15 中新增的导入 PDF 文档中的表格(甚至跨多个页面)。除了数据探索和可视化之外,JMP 还具有实验设计、可靠性和数据挖掘方面的尖端功能。JMP 提供现实世界 DOE 问题的解决方案、高效的计算机模拟和软件质量保证。机器学习方法包括决策树、神经网络以及线性、逻辑和惩罚回归方法。使用具有置信区间的更多可解释模型获得接近机器学习的准确性。将展示如何将 JMP 的“每个统计数据的图表”轻松移动到 PowerPoint 演示文稿和交互式 HTML5 网络报告中,以便观众可以提出“假设?”问题并立即获得答案,而无需使用 JMP 软件。分类:未分类工作组:演示
图形类别不使用一阶逻辑和顶点颜色编码所有线性订单的类,而图表类是稳定的。这包括许多稀疏的类,例如平面图,有限度,有界的树宽度和无处的茂密类,但也包括地图图等密集的类。更一般地,如果不编码所有图的类,则类别是单声学依赖的(也称为Monadainedally nip)。这包括上述稳定的类别,以及有限的集团或双宽度类别。起源于模型理论,主要研究了无限结构的稳定性和依赖性。在本论文中,我们结合了组合学和逻辑的工具,以开发一种有限图的稳定和依赖的有限图类别的理论,该类别非常适合其算法处理。我们获得以下结构/非结构二分法。在结构方面,我们通过两个称为翻转和折断性的Ramsey理论特性来征服Monadic稳定性和Monadic依赖性。这产生了一个更大的框架:自然限制流动式和翻转性能是无处浓密的,有限的集团和树宽,以及灌木和树的深度。在非结构方面,我们通过明确列出了很少的禁止诱导的子图的家庭来表征monadic的稳定性和monadic依赖性。我们通过证明了一阶模型检查问题的新障碍和硬度结果来显示我们特征的算法适用性。给定图G和一阶公式φ,我们想检查g是否满足φ。可以猜想的是,遗传图类允许固定参数可拖动的模型检查是否且仅及时依赖它。建立在翻文上,我们证明了一种名为Flipper Game的Monadic稳定性的游戏特征。使用flipper游戏的游戏树作为输入图的分解,我们表明一阶模型检查都是可在每个可乐稳定的图形类中固定参数。这证实了模型检查猜想的障碍侧的重要情况。使用对依赖性类别的禁止诱导的子图表进行表征,我们完全解决了硬度方面:我们表明,在每个无依赖性依赖的遗传图类别上,一阶模型检查是AW [∗] - hard。
Convergent Design 宣布推出 Erika AI 人脸追踪、四摄像头、超快速切换 (2022 年 6 月 3 日,科罗拉多州科罗拉多斯普林斯) Convergent Design 宣布推出用于会议和直播应用的全新 Erika AI 系统。Erika AI 的亮点包括人脸追踪、支持多达四个 UHD 摄像头以及超快速 (0.25 秒) 语音激活切换。每个参与者 (最多 20 人) 都有自己独特的 (虚拟) 摄像头和无线麦克风,可实现卓越的特写视图,同时将回声和混响降至最低。Erika AI 采用现成的大型传感器 4K DSLR/无反光镜相机。然后,系统从每个摄像头创建最多 5 个区域,勾勒出每个参与者的轮廓。这五个区域与 4 个摄像头相结合,最多可支持 20 名参与者。在 20 名参与者中的任何一名之间切换仍需 0.25 秒。Erika AI 无线麦克风通常位于会议桌边缘,靠近每个扬声器。微型麦克风不会占用工作空间,用户可以自由地做笔记或在笔记本电脑上打字。麦克风还可以通过简单的磁性附件佩戴,方便在会议区域自由移动。25 小时电池加上自动开/关机功能,可最大限度地减少充电停机时间。只需将麦克风面朝下翻转即可静音。自动音量控制可消除声音紧张,参与者可以用正常语调讲话。典型的设置时间不到 15 分钟,使系统易于重新配置。完整的 Erika AI 系统包括 1-4 个摄像头、1-20 个无线 Erika 麦克风、一个基于 USB 的无线接收器和一台运行 Erika AI 应用程序的 PC/笔记本电脑。Erika 与大多数 UCC 应用程序兼容,包括 Zoom、Teams、Meet、Webex 和 BlueJeans。此外,还支持 OBS、VMix、Wirecast 和 Pro Presenter 等直播程序。 Erika AI 应用程序支持通过简单的单击和拖动以及滚轮大小调整来放置每个摄像头内的每个区域(虚拟摄像头)。此外,还可以添加每个参与者的姓名和头衔以显示在会议应用程序屏幕上。独特的单人模式将系统锁定到特定扬声器,消除了因咳嗽、打喷嚏和其他噪音而导致的潜在错误切换。Erika AI 需要独立的 Nvidia GPU 来处理面部跟踪和增强功能,例如降噪、回声消除和超级缩放器。目前,视频输入是通过 HDMI/SDI 到 USB 转换器基于 USB 的。但是,未来的更新将包括 NDI 有线和无线支持以及基于 Stream Deck 的遥控器。在 InfoComm 2022 的 W1775 展位上观看 Erika AI 的实际应用。www.convergent-design.com
视频:离散和定义明确的聚合物的制备是模仿自然界大分子合成所获得的显着精确性的新兴策略。尽管现代受控的聚合物技术已经解锁了横跨各种单体,分子量和体系结构的材料的聚宝盆,但“控制”一词并不与“完美”相混淆。的确,即使是最高的聚合技术,由于链生长的统计学性质,不可避免地会在不可避免地会产生u = 1.05附近产生摩尔质量分散性。这种分散性会影响研究人员寻求控制软材料设计的许多属性。因此,制定最小化或完全消除分散性并获得分子精确聚合物的策略仍然是当代的关键挑战。While significant advances have been made in the realm of iterative synthetic methods that construct oligomers with an exact molecular weight, head-to-tail connectivity, and even stereochemistry via small-molecule organic chemistry, as the word “iterative” suggests, these techniques involve manually propagating monomers one reaction at a time, often with intervening protection and deprotection steps.结果,这些策略是耗时的,难以缩放,并且仍然限于较低的分子量。该帐户的重点是一种替代策略,由于其简单性,多功能性和负担能力:色谱法。■密钥参考不熟悉合成复杂性的研究人员可能会回想起在本科化学实验室中暴露于色谱法。这种操作简单但功能非常强大的技术最常见于小分子通过其选择性(差异)吸附到装有低成本固定相(通常是二氧化硅)的色谱柱上的纯化中。由于必要的设备很容易获得,并且实际分离所需的时间很少(按1小时为单位),因此色谱法在整个行业和学术界都广泛地用于小分子化学。也可能令人惊讶的是,在聚合物科学领域,类似类型的色谱也没有更广泛的利用。在这里,我们讨论了使用色谱法控制聚合物材料的结构和特性的最新进展。重点放在基于吸附的机制的实用性上,该机制基于材料科学的可拖动(克(克)尺度的极性和组成分离聚合物,与尺寸排除相比,这是非常普遍的,但通常分析的样品(〜1 mg),并且限制为摩尔质量的样品(〜1 mg)。突出显示的关键概念包括(1)将低分子量均聚物分离为具有精确链长度的离散低聚物(a = 1.0),以及(2)将块共聚物分成高素质的高素质和广泛多样的图书馆,以进行预告材料发现。总而言之,作者希望传达色谱法提供的聚合物科学中令人兴奋的可能性,作为一种可扩展的,多功能甚至自动化的技术,可以通过不同的培训和专业知识来解锁各种研究人员的新探索途径,以供各种研究人员探索良好的材料。
抗生素耐药细菌的兴起是全球健康问题,由于这些抗性感染,到2050年,每年预计每年将超过100万人死亡。世界卫生组织(WHO)已经确定了十二种关键的抗生素病原体,包括抗性霉素肠球菌(VRE),例如肠球菌(E.粪便)。vre引起严重的医院可获得的感染,例如心内膜炎和败血症,并对多种抗生素产生了抗药性,强调了对新的抗菌治疗的迫切需求。应对这一危机,由日本千叶大学科学研究生院的Takeshi Murata教授领导的研究人员团队发现了一种有希望的新化合物V-161,有效地抑制了VRE的增长。他们的研究检查了在这些细菌中发现的一种称为Na +传输V-ATPase的钠泵化酶,该酶在E. hirae中发现,E. hirae是粪肠球大肠杆菌的亲戚,用作研究酶的更安全,更可拖动的模型。该团队由Chiba University科学研究生院的第一作者Kano Suzuki助理教授组成;奇巴大学医学真菌学研究中心的Yoshiyuki Goto副教授;高能加速器研究组织结构生物学研究中心的Toshiya Senda教授和Toshio Moriya副教授;国立自然科学研究所的分子科学研究所的Ryota Iino教授。Murata博士解释说:“这种酶有助于将钠离子从细胞中泵出,有助于VRE的生存,尤其是在像人类肠道这样的碱性环境中。这项研究于2024年11月21日在自然结构和分子生物学上发表,假设Na +传输V- ATPase在开发抗生素的发展中可以发挥关键作用,该抗生素专门针对VRE而不影响有益细菌。这种酶在像乳杆菌等有益细菌中不存在,尽管人类具有相似的酶,但它具有不同的功能。这使得VRE中的Na +传输V -ATPase成为选择性抗菌治疗的理想目标。”他进一步指出:“我们筛选了70,000多种化合物,以鉴定酶Na + -V -ATPase的潜在抑制剂。在其中,V-161是一个有力的候选人,在碱性条件下降低VRE生长方面表现出显着的有效性,这对于这种抗性病原体的生存至关重要。”此后,进一步的研究表明,V-161不仅抑制了酶功能,而且还降低了小鼠小肠中的VRE定植,突出了其治疗潜力。这项研究的主要发现是对酶的膜V 0结构域的高分辨率结构分析,揭示了对V-161如何与之结合并破坏酶功能的详细见解。v-161靶向酶的C形环与A-subunit之间的界面,有效地阻断了钠转运。这种结构信息对于理解化合物的起作用至关重要,并为开发针对该酶的药物提供了基础。Murata博士解释说:“从结构分析获得的发现可用于开发其他难治性细菌的治疗方法,也为制定未来药物开发的重要准则构成了基础。”他进一步补充说:“我们希望不仅为VRE进行创新治疗的发展,而且多种耐药细菌将大大推动对耐药性感染的治疗。”
注意!降低了对人的火灾,电击或伤害的风险:•将UPS插入2极,3线接地的插座(墙壁出口)中。确保墙分支出口受保险丝或断路器的保护,并且不为具有巨大电气需求的设备提供服务(例如,空调,冰箱,复印机等)。如果供应线或插头损坏,请勿使用。始终通过插头拔下电源线,从不拖动电缆。•除了为电池提供服务外,不要卸下盖子。更换电池时,请使用相同的电池数量和类型。除电池外,内部没有可用的用户服务零件。对用户可更换电池进行维修,应由人员了解电池和所需预防措施的人员进行或监督。不要尝试向UPS添加外部电池。•尽管UPS可能会从公用电源中拔出,但可能仍会通过电池出现危险电压。在维修电池之前,请始终关闭设备并从交流电源上拔下电源。•不要覆盖UPS的冷却通风口,避免将设备暴露在阳光下或在发热电器(例如太空加热器或炉子)附近安装设备。不要让UPS暴露于水分,雨水过多或直射阳光下。不允许液体或任何异物进入UPS。请勿将饮料或任何其他含液的容器(即水族馆)放在单位或附近。液体的缩合会导致单位短路。保持稳定的表面。•在温度和湿度控制的室内区域内安装,无导电污染物。•在紧急情况下,按下OFF按钮,然后将电源线与AC电源断开连接。•请勿将电池放置在火中,电池可能会爆炸。请勿打开或残害电池。释放的材料对皮肤和眼睛有害,可能有毒。•请勿将非计算机相关的物品(例如医疗,救生器或核设备,微波炉或真空吸尘器)附加到UPS。在任何会影响任何生命支持设备或任何医疗应用或患者护理的情况下都不使用。•始终遵守所有本地和国家电气代码。•窒息,窒息或电击的风险。不允许降低感官,身体或精神能力,儿童或宠物的人使用塑料袋,包装材料或电池播放。•请勿在任何运输中使用UPS,例如飞机或船舶。在过境和潮湿环境中引起的冲击或振动会导致单位短路。•请勿与其他功率条,UPS,电涌保护器或延长线一起以串行方式与延长线,附件电涌保护器一起使用,或以“雏菊链”方式使用。•除了预期用途以外,不要使用UPS。•使用带有绝缘手柄的工具。在维修时断开电源之前,请勿处理任何金属连接器。在更换电池时始终卸下金属物体,例如手表和珠宝,例如戒指。•请根据当地法规或法规回收二手电池。不要将电池与常规的家庭垃圾一起丢弃;电池被认为是危险废物。处置前将电池从UPS中卸下。请访问https://www.calrecycle.ca.gov/找到当地的回收中心。
高级科学技术研究组织,横滨,日本物理研究中心基金会(FOPRC),意大利科森扎。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。 在本文中,讨论了通过电载力推动卫星的可能性。 通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。 它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。 关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。 已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。 最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。 星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。 卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。在本文中,讨论了通过电载力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。即使卫星在轨道上,也可能会从薄的气氛和其他力量中拖动,这些力会随着时间的流逝而降解轨道。因此,卫星必须能够对其轨道进行小校正以维护轨道,称为轨道站保持[1]。此外,卫星可能需要不时将一个轨道转移到另一个轨道[2],能够在地球表面,太阳或可能的其他感兴趣的天文学对象[3]中保持特定的态度[3],并且由于组件故障或其他原因甚至可能需要以安全和受控的方式被解除。在大多数情况下,卫星执行所设计的任务的能力已经结束,其用途寿命已经结束,当它允许其对其轨道进行此类调整的推进系统已经耗尽或不再产生推进。目前,卫星通常只会使用较小版本的化学火箭发动机或抵抗火箭的推进。有些人确实使用电动动量轮进行态度控制,但是由于运动部件而导致的失败,并且在可以执行的校正程度上有限。最近,卫星已经开始使用电动推进,例如离子推进器来保持和调节轨道,但是尽管电力电力,但此类推进器仍然有限地供应其
II。 文献调查1。 具有Kinect传感器的强大手识别:在拟议的系统中,使用Kinect传感器的深度和颜色信息来检测手的形状。 用于手势识别,使用Kinect传感器是一个困难的问题。 这种Kinect传感器的分辨率仅为640×480。 它可以很好地跟踪大物体,例如人体。 ,但是像手指一样小的东西很复杂。 [5] 2。 LED拟合的手指运动:它提出了一种将LED安装在用户手指上的方法,并使用网络摄像头跟踪手指。 将绘制的字符与数据库中存在的字符进行比较。 它返回与绘制模式匹配的所有字母。 它需要一个尖的红色LED灯源,该灯光源连接到手指上。 另外,假设网络摄像头的焦点中没有LED灯以外没有其他红色对象。 [3] 3。 增强的桌面接口:在增强的分段桌面接口方法中,提出了用于交互的方法。 此系统使用投影仪和带电的设备(CCD)摄像头供您使用指尖;用户可以使用桌面应用程序。 在此系统中,每个部分执行每个独特的任务。 左手用于选择径向菜单,而右手则用于选择进行操作的对象。 他通过使用红外相机来实现这一目标。 确定指尖在计算上是昂贵的,因此该系统定义了指尖的搜索窗口。 [4] 4。 5。 [1] 6。II。文献调查1。具有Kinect传感器的强大手识别:在拟议的系统中,使用Kinect传感器的深度和颜色信息来检测手的形状。用于手势识别,使用Kinect传感器是一个困难的问题。这种Kinect传感器的分辨率仅为640×480。它可以很好地跟踪大物体,例如人体。,但是像手指一样小的东西很复杂。[5] 2。LED拟合的手指运动:它提出了一种将LED安装在用户手指上的方法,并使用网络摄像头跟踪手指。将绘制的字符与数据库中存在的字符进行比较。它返回与绘制模式匹配的所有字母。它需要一个尖的红色LED灯源,该灯光源连接到手指上。另外,假设网络摄像头的焦点中没有LED灯以外没有其他红色对象。[3] 3。增强的桌面接口:在增强的分段桌面接口方法中,提出了用于交互的方法。此系统使用投影仪和带电的设备(CCD)摄像头供您使用指尖;用户可以使用桌面应用程序。在此系统中,每个部分执行每个独特的任务。左手用于选择径向菜单,而右手则用于选择进行操作的对象。他通过使用红外相机来实现这一目标。确定指尖在计算上是昂贵的,因此该系统定义了指尖的搜索窗口。[4] 4。5。[1] 6。带有空气鼠标的系统:带有一些传感器的设备,可以用手指磨损为空气鼠标。空气鼠标确实可以用作鼠标,以便为系统提供各种输入,而在屏幕前的空气中,空气鼠标的工作只有差异。它包含有助于为系统提供所需输入的传感器。某些手动作,例如抓取,保持手垂直的动作用于执行与真实鼠标相同的选择,拖动或滚动等动作。计算机视觉和图像理解:在本文中,Yang等人讨论了将图像序列与模型匹配的问题的替代解决方案,并且此问题通常发生在手势识别中。他们提出的方法不依赖肤色模型,并且也可以处理不良的分割。他们使用中间分组过程将两个分割过程与识别结合在一起。ACM Siggraph关于计算机动画的研讨会:在本文中,Wang等人讨论了室内和室外环境的基于颜色的运动捕获系统。在他们建议的方法中,他们使用了网络摄像头和彩色衬衫来跟踪对象。他们提出的方法结果表明,所提出的方法可用于虚拟现实应用程序。[2]