摘要 — 近期的量子计算机只能容纳少量的量子比特。促进大规模量子计算的一种方法是通过量子计算机的分布式网络。在这项工作中,我们考虑了在异构量子计算机的量子网络中以量子电路的形式分发量子程序的问题,以最小化执行分布式电路所需的总体通信成本。我们考虑了两种通信方式:在计算机对之间创建量子比特链接副本的猫纠缠和隐形传态。异构计算机对猫纠缠和隐形传态操作施加了约束,这些约束可以通过算法来选择。我们首先关注一种特殊情况,即只允许猫纠缠而不允许隐形传态进行通信。我们提供了一个两步启发式方法来解决这种特殊情况:(i) 使用禁忌搜索找到分配给计算机的量子比特,以及 (ii) 使用为集合覆盖问题的约束版本设计的迭代贪婪算法来确定在本地执行门所需的猫纠缠操作。对于允许两种通信形式的一般情况,我们提出了两种算法,将量子电路细分为几个部分,并在每个部分上应用针对特定设置的启发式算法。然后使用隐形传态将每个部分的解决方案拼接在一起。最后,我们在大量随机生成的量子网络和电路上模拟我们的算法,并研究其结果相对于几个不同参数的属性。
已经确定了100多种自然发生的RNA修饰,其中一些在基因表达调节中起了各种作用。[1-3]作为真核mRNA中最丰富的内部修饰,n 6-甲基拉丹代氨酸(M 6 A)受动态调节,并参与了mRNA代谢的许多方面,例如替代拼接,[4]核输出,[5]稳定性,[5]稳定性,[6] [6]转换[7,8]和dean。[9]近年来,关于其他mRNA修饰的整个转录组测序的研究也已经出现。报告的排序方法可以分组为:(1)基于抗体的M 6 A 4,M 1 A,[10-13] AC 4 C 14,15,M 5 C 16和HM 5 C 17。这些方法依赖于基于抗体的富集,但既不能达到碱基精度也无法揭示绝对修饰的部分。(2)逆转录(RT)基于停止的方法,例如基于CMC的假喹啉测序[18]和基于低DNTP的2'-O-O-ME测序。[19]尽管这些方法可以以基础分辨率检测修饰位点,但它们通常具有很高的假阳性速率,因为RT停止签名可能是非特定于特定特定的。[20](3)基于RT突变的AP促进,例如映射M 6 A,[21-24] M 7 G [25-27]和M 1 A [28]的方法,这些方法在修改的位点产生突变特征以实现单个基础分辨率,以低背景。(4)基于RT缺失的方法,例如BS诱导的定量假氨酸测序。[29,30] RNA修饰中的另一个考虑是每个位点的修饰化学计量法。修饰分数是与修饰动力学及其调节功能直接相关的生物学参数。5-甲基胞嘧啶(5MC),5-羟基甲基环胞嘧啶(5HMC)和5-甲基辛糖苷(5FC)是DNA中重要的中间体的DNA修饰,是活性DNA 5MC
原理:基于干细胞的疗法已成为组织工程和再生医学的有前途的工具,但是它们的治疗疗效在很大程度上受到氧化应激诱导的受伤组织部位移植细胞的丧失的限制。为了解决这个问题,我们旨在探索ROS引起的MSC损失的潜在机制和保护策略。方法:使用实时PCR,Western blotting和RNA测序评估了TFAM(线粒体转录因子A)信号传导,线粒体功能,线粒体损伤,DNA损伤,凋亡和衰老。还分析了MSC中TFAM或LNCRNA核拼接组件的转录本1(Neat1)敲低或过表达对线粒体功能,DNA损伤修复,凋亡和衰老的影响。在肾脏缺血/再灌注(I/R)损伤的小鼠模型中评估了线粒体靶向抗氧化剂(mito-tempo)对移植MSC存活的影响。结果:线粒体ROS(MTROS)爆发导致TFAM信号传导和总体线粒体功能的缺陷,这进一步损害了Neat1表达及其介导的副夹层的形成和MSC中的DNA修复途径,从而在氧化应激下共同促进MSC衰减和死亡。相比之下,有针对性的抑制MTROS爆发是一种足够的策略,可以减轻受伤组织部位的早期移植MSC损失,而Mito-Tempo的共同给药可改善移植的MSC的局部保留和减少缺血性肾脏的氧化损伤。结论:本研究确定了线粒体 - 拼双轴在调节细胞存活中的关键作用,并可能为开发用于组织工程和再生医学的先进干细胞疗法提供见解。
2025年2月20日,克里斯汀·比廷特(Kristin Bittinger),J.D。通过电子邮件:Kristin_Bittinger@hms.harvard.edu的学术和研究完整性教师和研究诚信办公室院长; ari@hms.harvard.edu尊敬的Bittinger女士:我代表人们为动物的道德待遇(PETA)写信,要求哈佛医学院的学术和研究完整性办公室(ARI)调查迪恩·乔治·迪利(Dean George Q. Daley),以便可能进行研究不当。 近年来,迪恩·戴利(Dean Daley)的《美国国家航空航天局》(NIH)资助的几本出版物引起了科学界的关注,因为它们包括重复或拼接的图像。 Daley实验室在十个单独的数字中撤回了一个出版物1的错误,而原始数据无法支持。 Daley的实验室还需要纠正其他几个出版物2,3,4,5,这是由于重复的图像面板和/或剪接的图像。 此外,他的至少十本出版物提出了对重复或操纵图像的尚未解决的问题,在线论坛Pubpeer上标记了6,7,8,9,11,11,12,12,13,14,15。 例如,在《血液》文章中的图2b中,“人类血液中诱导多能干细胞的产生”,12描绘两个不同基因表达的面板看起来与增强的对比度相同。 关于PubPeer的几位评论者还指出,对于“ Lin28调节干细胞代谢并转化为启动多能性)的文章,9发表在细胞干细胞中,许多图描绘了带有两个组蛋白甲基化带的蛋白质印迹数据。 此外,Bik博士在PubPeer上指出,在补充图11a中的图11a通过电子邮件:Kristin_Bittinger@hms.harvard.edu的学术和研究完整性教师和研究诚信办公室院长; ari@hms.harvard.edu尊敬的Bittinger女士:我代表人们为动物的道德待遇(PETA)写信,要求哈佛医学院的学术和研究完整性办公室(ARI)调查迪恩·乔治·迪利(Dean George Q. Daley),以便可能进行研究不当。近年来,迪恩·戴利(Dean Daley)的《美国国家航空航天局》(NIH)资助的几本出版物引起了科学界的关注,因为它们包括重复或拼接的图像。Daley实验室在十个单独的数字中撤回了一个出版物1的错误,而原始数据无法支持。Daley的实验室还需要纠正其他几个出版物2,3,4,5,这是由于重复的图像面板和/或剪接的图像。此外,他的至少十本出版物提出了对重复或操纵图像的尚未解决的问题,在线论坛Pubpeer上标记了6,7,8,9,11,11,12,12,13,14,15。例如,在《血液》文章中的图2b中,“人类血液中诱导多能干细胞的产生”,12描绘两个不同基因表达的面板看起来与增强的对比度相同。关于PubPeer的几位评论者还指出,对于“ Lin28调节干细胞代谢并转化为启动多能性)的文章,9发表在细胞干细胞中,许多图描绘了带有两个组蛋白甲基化带的蛋白质印迹数据。此外,Bik博士在PubPeer上指出,在补充图11a中在图2c和自然文章的图2c和2d中,还使用了一个重复的图像,“人类体细胞对具有定义因素的多能重新编程”。 15正如伊丽莎白·比克(Elizabeth Bik)博士在Pubpeer上指出的那样,“ Lin28/Let-7轴调节细胞中发表的葡萄糖代谢”的文章具有多种不规则性。具体来说,图3D和4D显示了在两个不同的实验条件下看起来相同的蛋白质印迹,并且图5a被认为描绘了尺寸明显不同的小鼠,但显示了图像裁剪的证据。
简介 3 项目、规划和计划 伊利诺伊州量子和微电子园区 4 Advocate 医院 5 Missing Middle 6 Rector 大楼 7 Plant Chicago 8 Sputnik Coffee 9 Fillmore Center 10 BandWith Chicago 11 The Scoring Stage 12 Westgate 13 Pete's Fresh Market 14 Sav A Lot 15 Sisters in Cinema 16 Jamaican Jerk Villa 16 Revolution Workshop 17 TimeLine Theater 18 Double Door 19 The Revival 20 Go Green Griot Plaza 21 WHPop 22 South Side Sanctuary 23 Overton Exchange Plaza 24 Austin Community Health Hub 25 Wood Street Farm Expansion 26 Englewood Agro-Eco District Land Use Plan 27 Milwaukee Avenue 城市身份研究 28 Broadway 土地利用规划研究 29 Western Avenue 重新分区 29 Cicero Avenue 走廊研究 30 Harlem Avenue 愿景研究30 拼接起来 31 阿米蒂奇工业走廊规划 31 95 街走廊规划 32 黑人文化丰收 33 城市公民日 34 芝加哥制造业奖 35 保护博览会 36 阿波罗 2000 37 海德公园联合教堂 38 杰克逊仓储和货车公司 39 约翰·B·墨菲纪念碑 40 玛氏糖果工厂 41 菲比和约翰·格雷之家 42 拉莫瓦剧院 43 中城信托储蓄银行 44 熨斗大厦 45 帆船 46 商业改善区 47 芝加哥公园区 48 芝加哥公立学校 49 规划开发 50 部门联系人 56
摘要 — 量子计算的当前阶段处于噪声中型量子 (NISQ) 时代。在 NISQ 设备上,双量子比特门(例如 CNOT)比单量子比特门噪声大得多,因此必须尽量减少它们的数量。量子电路合成是将任意幺正分解为一系列量子门的过程,可以用作优化工具来生成更短的电路以提高整体电路保真度。然而,合成的解决时间随着量子比特数量的增加而呈指数增长。因此,对于大规模量子比特电路来说,合成是难以实现的。在本文中,我们提出了一个分层的逐块优化框架 QGo,用于量子电路优化。我们的方法允许指数成本优化扩展到大型电路。QGo 结合使用分区和合成:1) 将电路划分为一系列独立的电路块; 2) 使用量子合成重新生成和优化每个块;3) 通过将所有块拼接在一起重新组成最终电路。我们进行分析并展示三种不同情况下的保真度改进:真实设备上的小尺寸电路、噪声模拟中的中尺寸电路和分析模型上的大尺寸电路。我们的技术可以在现有优化之后应用,以实现更高的电路保真度。使用一组 NISQ 基准,我们表明,与 t | ket ⟩ 等工业编译器优化相比,QGo 可以将 CNOT 门的数量平均减少 29.9%,最多可减少 50%。在 IBM Athens 系统上执行时,较短的深度可带来更高的电路保真度。我们还展示了 QGo 技术的可扩展性,以优化 60 多个量子比特的电路。我们的技术首次成功展示在大型电路的编译工具链中采用和扩展合成。总体而言,我们的方法非常稳健,可以直接纳入生产编译器工具链,以进一步提高电路保真度。索引术语——量子计算、优化、综合、量子编译器
1.1工程物理学半导体材料,P型和N型半导体;半导体中的费米水平;当前的半导体传导,P-N结二极管的I-V特性,一些特殊的P-N二极管:Zener二极管,隧道二极管,照片二极管和光发射二极管。爱因斯坦的物质辐射相互作用理论以及A和B系数;通过种群反演,不同类型的激光器来扩增光线:气体激光器(HE-NE,CO2),固态激光器(Ruby,Neododim),染料激光器;激光束的特性:单色,相干性,方向性和亮度,激光斑点,激光在科学,工程和医学中的应用。光纤介绍,验收角,数值孔径,归一化频率,传播模式,材料分散和脉冲扩展,在光纤,光纤连接器,拼接和耦合器中,光纤的应用。电磁波和电介质,梯度,发散和卷曲的物理意义,电场与潜在之间的关系,介电极极化,位移电流,麦克斯韦的方程,自由空间中的电磁波传播,以及各向同性的电介质介质中介质,poynting媒介,poynting媒介物,电子磁性,电子磁性,基本概念(基本构想)。Magnetic Materials & Superconductivity, Basic ideas of Dia, Para, Ferro & Ferrimagnetic materials, Ferrites, Hysteresis loop, Magnetic Anisotropy, Superconductivity, Superconductors as ideal diamagnetic materials, Signatures of Superconducting state, Meissner Effect, Type I & Type II superconductors, Applications of superconductivity.1.2基本电气和电子工程DC电路,涵盖了欧姆法律和基希霍夫的法律;分析由独立电压源激发的串联,并行和串联平行电路;力量和能量;电磁涵盖,法拉第法律,伦茨法律,弗莱明的规则,静态和动态诱导的EMF;自我电感,相互电感和耦合系数的概念;存储在磁场中的能量;单相交流电路涵盖正弦电压的产生,平均值,均方根值,正弦电压的外形因子和峰值因子和电流,交替数量的相量表示;分析
(说明)[背景]试图研究基因的作用时,一种方法是防止基因工作并分析其结果。 CRISPR-CAS9是一种基因组编辑方法之一,被广泛用于停止此类基因的功能。但是,许多生存必不可少的基因很难研究,因为功能障碍可能会产生致命作用。在此类问题的情况下,研究是通过部分抑制基因功能而不是完全停止基因功能来完成的。但是,许多用于此目的的实验方法都是困难且不稳定的,并且希望开发一种简单稳定的方法来抑制基因功能。因此,在这项研究中,我们通过设计CRISPR-CAS9的使用来开发一种简单而稳定的方法,用于产生部分抑制突变体。 [研究含量]基因组DNA是生物生物的蓝图,遵循称为中心教条 *2的基本原理,并产生mRNA和蛋白质以调节细胞的功能。在“真核生物”中,是含有拟南芥 *3的植物,包括人类在当前研究中使用的动物,在从DNA产生mRNA之后,将部分mRNA切除(拼接 *4)形成成熟的mRNA。 DNA包含控制剪接的序列,但是如果在此部分发生异常,则剪接后的mRNA和蛋白质序列将变得异常。 在这项研究中,使用CRISPR-CAS9进行了基因组编辑,以创建这种异常。 CRISPR-CAS9系统旨在针对使用Gene HPY2控制剪接的序列,据报道,该基因在拟南芥中的功能显着降低,据报道,该拟南芥在模型植物的拟南芥中发芽的几天内致死。结果,我们成功地创建了拟南芥,该拟南芥具有一个序列,其中剪接控制顺序按预期去除。此外,我们证实了拟南芥中从HPY2基因产生的成熟mRNA序列比正常生成的成熟mRNA序列略短。与正常的蛋白质相比,由该mRNA产生的蛋白质可能缺乏一些序列。但是,保留了粗糙的结构,表明某些蛋白质的功能可能仍然存在。实际上,本研究中产生的突变体HPY2-CR3能够比完全失去已知HPY2基因的功能并受到致命影响的功能的寿命更长,并且有些人能够成长为可以开花的阶段。
大脑活动由振荡和宽带心律失常成分组成;然而,在运动研究中,人们更多地关注振荡感觉运动节律,而宽带心律失常脑电图 (EEG) 的时间动态仍未被探索。我们之前已经证明,宽带心律失常脑电图包含短距离和长距离时间相关性,这些相关性在运动过程中会发生显著变化。在本研究中,我们以之前的工作为基础,更深入地了解宽带脑电图中长距离时间相关性 (LRTC) 的这些变化,并将它们与文献中常见的众所周知的 alpha 振荡幅度 LRTC 进行对比。我们使用两个独立的 EEG 数据集(这两个数据集以两种不同的范式记录)来调查和验证五种不同类型的运动和运动想象任务期间 LRTC 的变化——我们的手指敲击数据集(包含单次自我发起的异步手指敲击)和公开可用的 EEG 数据集(包含提示的拳头和脚的连续运动和运动想象)。我们通过对单次试验 2 秒 EEG 滑动窗口进行去趋势波动分析,量化了宽带 LRTC 的瞬时变化。与静息状态相比,宽带 LRTC 在所有运动任务中均显著增加(p < 0.05)。相反,必须在较长的拼接 EEG 段上计算的 alpha 振荡 LRTC 显著下降(p < 0.05),与文献一致。这表明在运动和运动想象过程中,潜在的快速和慢速神经元无标度动力学是互补的。单次试验宽带 LRTC 在所有运动执行和想象任务中均具有较高的平均二元分类准确率,范围为 70.54 ± 10.03 % 至 76.07 ± 6.40 %,因此可用于脑机接口 (BCI)。因此,我们证明了新型运动神经相关性单次试验宽带 LRTC 在单个异步和提示连续运动-BCI 范式中的不同运动执行和想象任务中的普遍性、稳健性和可重复性,以及它与 LRTC 在 alpha 振荡幅度方面的对比行为。
通常,诊断和治疗较早的肾癌,结果越好。肾癌期生存期为5年的存活率(1)。肾细胞癌(RCC)是最常见的恶性肾脏肿瘤类型。它是在发生过滤的肾脏的主要物质中发现的。RCC可以在肾脏内显示为单个肿瘤,也可以在同一肾脏内显示为两个或两个或更多肿瘤(2)。10个肾脏癌中约有9个是肾细胞癌。尽管RCC通常在肾脏中成长为单个肿瘤,但可以同时在一个肾脏或两个肾脏中同时有两个或更多的肿瘤(3)。RCC根据实验室中癌细胞的出现分为几种亚型。知道RCC的亚型可以帮助您的医生确定您的癌症是否是由遗传性遗传综合征引起的(4)。尽管在RCC治疗方面取得了许多成功,但治疗方案和反应率在各种分子亚型之间有所不同(5)。治疗肾脏肿块的主要目标用于治愈癌症患者并尽可能保留肾脏功能。保护肾功能对于仅肾脏或另一种类型的肾脏疾病的患者很重要(6)。长的非编码RNA(LNCRNA)是RNA转录本,其长度超过200个核苷酸,但未转化为蛋白质。近年来,LNCRNA被发现是各种生物学功能和基因表达调节的重要参与者(7)。某些LNCRNA表达的变化与各种形式的癌症有关(8)。许多LNCRNA,包括Hotair(9),MRCCAT1(9),UCA1(10),ATB(11),H19(12)和–FTX(13)(13),已在RCC肿瘤发生中鉴定出来,并建议对RCC的重要生物标志物进行重要的生物标志物。核拼接组装转录本1(NEAT1)是一个长的非编码RNA,从家族性肿瘤综合征转录,在11q13.1染色体上的多个内分泌肿瘤(MEN)1型基因座,并编码两个转录变体,NEAT1 -1 -1(3756 bp)和Neateat 1(3756 bp)和Neat11 -2 -226 -Bp- 3756 Bp(3756)。由于缺乏NEAT1的小鼠正常发育,因此似乎不需要Neat1来正常的胚胎发育或成人生活。然而,在另一种情况下,Neat1的遗传消融导致乳腺形态发生异常和泌乳缺陷(15)。如果Neat1的损失与正常的细胞活力和生长一致,则应进一步研究。由于Neat1负责肿瘤起始