立方体卫星越来越多地被指定用于要求严格的天文和地球观测任务,在这些任务中,精确指向和稳定性是关键要求。立方体卫星很难达到这样的精度,主要是因为它们的转动惯量很小,这意味着即使是很小的干扰扭矩,例如由剩磁矩引起的扭矩,也会对纳米卫星的姿态产生重大影响,当需要高度的稳定性时。此外,硬件在功率、重量和尺寸方面的限制也使这项任务更具挑战性。最近,萨里大学开展了一项博士研究计划,以研究立方体卫星的磁特性。研究发现,通过良好的工程实践,如减少使用导磁材料和最小化电流环路面积,可以减轻干扰。本文讨论了纳米卫星干扰的主要来源,并介绍了一项调查和简要介绍磁性清洁技术,以最大限度地减少剩磁场的影响。它的主要目的是为立方体卫星社区提供指导,以设计未来具有改进姿态稳定性的立方体卫星。然后,我们介绍了迄今为止对立方体卫星和纳米卫星的残余磁偶极子测定新技术的发现。该方法通过在航天器上实施八个微型三轴磁力仪网络来执行。它们用于在轨道上实时动态确定航天器的磁偶极子的强度、方向和中心。该技术将有助于减少磁干扰的影响并提高立方体卫星的稳定性。开发了一个软件模型和一个使用八个通过 Raspberry-Pi 控制的磁力仪的硬件原型,并使用 Alsat-1N 立方体卫星的吊杆有效载荷和为验证目的而开发的磁空心线圈成功进行了测试。引用本文:A. Lassakeur、C. Underwood、B. Taylor 和 R. Duke,《立方体卫星和纳米卫星的磁清洁度计划以提高姿态稳定性》,《航空航天技术杂志》,第 13 卷,第 1 期,第 25-41 页,2020 年 1 月。
摘要 较高的视线指向精度是提高光电干扰吊舱激光对抗能力的前提。传统光电吊舱中电视跟踪时延降低了系统相位裕度、系统稳定性及视线指向精度。针对这一不足,在两轴四框架结构的内框架位置环中引入归一化LMS算法来补偿电视摄像机时延,使吊舱避免系统相位裕度降低,同时采用快速反射镜系统来提高视线指向精度。首先,提出一种归一化LMS算法;其次,设计了一种外框架模拟控制器和内框架滞后超前控制器的复合控制结构;最后,分析了FSM波束控制精度。实验结果表明,归一化LMS算法几乎没有时延;而且,其方位角和俯仰波束控制精度较传统光电吊舱分别提高15倍和3倍。
本文对手动控制理论中的四种模型进行了实证比较,以了解它们对人类用户使用鼠标进行瞄准行为建模的能力:McRuer 的 Crossover、Costello 的 Surge、二阶滞后 (2OL) 和 Bang-bang 模型。此类动态模型具有生成性,不仅可以估计移动时间,还可以估计指针的位置、速度和加速度。我们描述了一个实验框架,用于获取指向动作并自动将数学模型的参数与实证数据相匹配。我们介绍了实验数据的时间序列、相空间和胡克图可视化的使用,以深入了解人类指向动态。我们发现,所识别的控制模型可以生成一系列动态行为,这些行为在不同程度上捕捉人类指向行为的各个方面。难度指数 (ID) 较低的条件表现出较差的适应性,因为它们不受约束的性质自然会导致更多的行为变化。我们报告了人类在指向过程中的波动行为(初始的弹道子运动)的特征,以及许多控制器性能指标的差异,包括过冲、稳定时间、峰值时间和上升时间。我们描述了模型之间的权衡。我们得出结论,控制理论为基于菲茨定律的人机交互方法提供了有希望的补充,模型提供了人类指向动力学的表示和预测,可以提高我们对
PC12 是同类飞机中制造最精良、飞行最安全的飞机之一。对吗?作者:John Morris 绝对正确!但既然如此,那么为什么在过去一年(2008 年 9 月至 2009 年 8 月)期间,[报告的] 事件(1)/ 事故(4 起致命)不幸增加?当局对所有 PC12 事故(视为已结案)以及美国大多数航空事故给出的主要原因是人为因素或空间定向障碍,通常意味着这是飞行员的错。无论使用何种措辞,将其归咎于飞行员,有时似乎是一个过于简单的借口,而且不公平,尽管将其归咎于其他人(或事物)已成为一种全国性的消遣。然而,与所有其他指责者不同,在提到人为因素的情况下,飞机事故调查的范围及其结论确实指向某种判断或决策错误,而这种错误至少可能导致最终结果。我们都应该意识到导致这一结果的事件“链”,飞行员的行为或不作为可以形成联系或打破这一链条。所以我们又一次在这里讨论决策和风险管理。为什么?在我看来,我们需要另一次审查,也许还需要一个不同的视角。FAA [风险管理手册 - 2009 年 5 月]、AOPA 和其他来源提供了风险管理工具。它们非常有用,至少应该定期参考。但本文将重点关注从不同角度看到的决策和风险管理,即对 PC12 能力可能过度自信,导致决策失误和风险增加。在我多年的教学中,我通常会提到 Pilatus 如何出色地“确保”PC12 的飞行员安全,这意味着消除了许多飞行员可能导致事故/意外的经典方式。但没有人可以完全消除人为因素或消除破坏系统的手段。最终,重力总是占上风。因此,我们希望努力涵盖所有有形因素,并为无形因素做好准备。我很好奇,驾驶员是否会对 PC12 及其功能过于自信。让我们谈谈有形因素。技术是否助长了这种过度自信?当今的技术比以往任何时候都更加神奇,而且变化/改进的速度不是几年,而是几个月。因此,我确实相信,这会产生问题,成为链条中的一个环节,直到飞行员适应更新的可用技术。这方面的例子包括改进的下载天气信息、WAAS 升级的航空电子设备-自动驾驶仪接口,甚至 PC12NG 与 Apex 系统。我所说的调整是指正确理解和利用这些新信息,因为它适用于增强 PC12 的飞行。这也意味着了解这项新技术不那么明显的局限性,从而知道何时使用标准、基本的飞行判断,如果有疑问。另一个有形的是飞行员驾驶 PC12 的一般熟练程度,而不仅仅是仪表熟练程度。FAA 通过改变方法提供了一些帮助
