摘要。我们研究了政府对研发的资助(尤其是国防相关研发)对私人研发的影响,以及其对生产力增长的最终影响。我们使用来自 OECD 国家的行业国家级数据和来自法国的公司级数据,估计了将私人资助的研发与滞后的政府资助的研发联系起来的纵向模型。为了处理政府研发资金的潜在内生分配,我们使用预测的国防研发变化作为工具变量。在许多 OECD 国家,国防相关研发支出是迄今为止最重要的创新公共补贴形式。在这两个数据集中,我们发现了“挤入”而不是“挤出”的证据,因为政府资助的行业或公司的研发增加导致该行业或公司的私营部门研发显着增加。平均而言,政府资助的研发每增加 10%,私人资助的研发就会额外增加 5% 至 6%。我们还发现了国际溢出效应的证据,因为特定行业和国家政府资助的研发增加会提高其他国家同一行业的私人研发。最后,我们发现国防研发增加引起的私人研发增加会提高生产率。致谢:我们感谢经济和社会研究委员会通过经济绩效中心提供的财政支持。Patrick Warren 提供了真正出色的研究协助。Pierre Azoulay、Josh Lerner、Heidi Williams 和许多研讨会的参与者都给出了有益的评论。Mirko Draca 慷慨地向我们提供了有关美国国防采购的数据,这非常宝贵。我们也感谢 Sharon Belenzon 和 David Thesmar 与我们进行有益的讨论并分享他们的数据。
电话:+49(0)9641-70-569-0027/0028/0029/0032 电子邮件:7atc_pao@army.mil 网站:www.7atc. army.mil 车队咨询:5 月 20 日至 28 日,Grafenwoehr 和 Hohenfels 之间计划有多辆军车调动 德国格拉芬沃尔(2022 年 5 月 13 日)—— 5 月 20 日至 28 日,社区成员应该预计有多个军车车队在 Grafenwoehr 和 Hohenfels 训练区之间行驶,以支持联合决心 XVII 演习,沿 B299、B470、A6 和 A93 的几条路线。建议驾驶员在军用车队附近行驶时要格外小心。由于体积和重量,这些车辆行驶缓慢且能见度有限。驻巴伐利亚州的美国陆军重视做好邻居,并尽最大努力尽可能减轻对社区的交通影响,使用官方护卫车辆,将有限数量的军车组成一个车队以减少长度,使用多条路线和错开出发时间以缓解高峰通勤时段的拥堵。但是,居民可能会注意到延误。司机应注意以下德国交通法:车队被视为一辆车。例如,即使交通信号灯是红色的,只要第一辆车通过了绿灯,车队中的所有车辆都可以通过交通信号灯。以下规定也适用于环形交叉路口、斑马线和十字路口或使用拉链方法时:车队必须始终保持在一起。这也意味着不允许通过“挤入”来打断车队。联合决心是美国陆军欧洲和非洲定期演习系列,在巴伐利亚州第 7 军训练司令部和联合多国战备中心举行。 CbR XVII 计划于 2022 年 5 月 20 日至 6 月 19 日举行,美国陆军第 1 装甲旅战斗队、第 3 步兵师将评估和评估该旅在复杂的多域模拟战场中开展行动的能力。驻扎在欧洲的美国军队定期与盟友和伙伴国家进行此类演习,以增强互操作能力和战备能力。
本卷中的十三篇论文写于 1934 年至 1946 年之间,包括已故芝加哥大学亨利·西蒙斯教授的大部分主要著作。其中前六篇论文包含了作者立场的更一般性陈述。他将其描述为“自由市场自由主义”,其中国家有责任“维持一种法律和制度框架,使竞争能够有效地发挥控制作用”。为此,他呼吁彻底简化公司形式,严格限制规模、活动、资本结构以及广告和销售技巧。通过竞争力量进行控制的最大威胁是劳工组织的增长,西蒙斯教授认为这与资本主义或社会主义都不相容。“垄断而非竞争”决定的工资政策阻碍了投资和扩张,并将较差的劳动力挤入相对不具生产力的领域。在这方面,有人指出,《公平劳动标准法》“旨在并主要用来阻止纺织生产和纺织资本向南部各州迁移”。作者认为,经济不平等问题可以通过征收遗产税和所得税来解决。西蒙斯教授认为,民主必须关注消费者的利益,他指出,生产者和社区之间的利益冲突必须通过有效的群体间竞争来调和,而不是通过对特定生产者群体负责的政府机构从上而下行使权力来调和。这代表了对政治控制的潜在恐惧。在接下来的四篇文章中,重点是货币财政和金融安排。稳定的立法规则、通过将公共债务重新转换为公债和货币来简化公共债务结构以及通过分离银行的存款和贷款设施来部分消除短期债务将提供竞争性经济敏感的控制手段。专利改革和取消关税是西蒙斯教授三篇结论性文章中建议的商业政策之一,其中最后一篇是对贝弗里奇计划的“无情解读”。
减薄硅芯片在柔性基板上的倒装芯片组装 Tan Zhang、Zhenwei Hou 和 R. Wayne Johnson 奥本大学 阿拉巴马州奥本 Alina Moussessian 和 Linda Del Castillo 喷气推进实验室 加利福尼亚州帕萨迪纳 Charles Banda 物理科学实验室 摘要 将减薄硅芯片(25-100 µ m)组装到柔性基板上为从智能卡到太空雷达等各种应用提供了超薄柔性电子产品的选择。对于高密度应用,可以通过堆叠和层压预组装和测试的柔性层然后处理垂直互连来制造 3-D 模块。本文介绍了将减薄芯片倒装芯片组装到聚酰亚胺和液晶聚合物 (LCP) 柔性基板上的工艺。已经开发出两种用于聚酰亚胺和 LCP 柔性基板的组装方法。在第一种方法中,将焊料凸块芯片回流焊接到图案化柔性基板上。需要使用夹具在回流期间保持柔性基板平整。回流之后是底部填充分配和固化。底部填充分配工艺对于避免底部填充流到薄硅片顶部至关重要,我们将在下文中讨论这一工艺。在第二种方法中,通孔通过聚酰亚胺或 LCP 蚀刻,露出接触垫的底面。将焊膏挤入通孔,回流并清洗,在通孔中形成焊料“凸块”。对浸焊产生的具有低轮廓焊料凸块的芯片进行焊剂处理、放置和回流。然后对芯片进行底部填充。这种方法可降低总组装厚度。简介为了满足单芯片和堆叠芯片封装中不断降低的轮廓要求,正在开发薄芯片的组装工艺。1-4 柔性基板(25-50 µ m)提供了一种进一步减小封装厚度的方法。减薄的 Si-on-flex 结构也有利于太空应用。减薄的 Si 虽然易碎,但也很灵活。减薄的 Si-on-flex 可以卷成管状进行发射,并在太空中展开,从而形成带有集成电子设备的大面积天线。组装减薄的 Si-on-flex 必须解决的问题包括:基板设计和制造、减薄后的凸块、芯片处理、回流期间的基板平整度和底部填充分配。这些将在以下章节中讨论。基板本工作中使用了两种柔性基板材料:聚酰亚胺和液晶聚合物 (LCP)。LCP 特性包括 100GHz 下的良好介电性能、低吸湿性和极低的透湿性。5-13 LCP 的热膨胀系数 (CTE) 可以在 LCP 薄膜的双轴挤出过程中控制。市售薄膜的 CTE 为 8 和 17ppm/o C。在本工作中使用 8ppm/o C LCP 薄膜。在用于倒装芯片组装的传统柔性基板设计中,铜芯片连接点的图案化位置与芯片组装位置在柔性薄膜的同一侧(图 1)。阻焊层用于定义可焊焊盘区域(顶面设计)。另一种方法是蚀刻聚酰亚胺或 LCP 通孔,露出铜焊盘的底面(背面设计)。通孔通过激光钻孔或反应离子蚀刻 (RIE) 制成。倒装芯片从铜图案的对面组装(图 2),从而无需阻焊层并减小了总厚度。这种方法的另一个优点(低轮廓凸块)将在后面介绍。顶面聚酰亚胺基板由约翰霍普金斯大学应用物理实验室制造,而激光钻孔背面 LCP 设计由 STS ATL 公司制造。背面 (RIE) LCP 和聚酰亚胺基板由奥本大学制造。只需一层金属即可布线菊花链芯片互连图案。