摘要:合金和实心溶液的合理设计依赖于相图的准确计算预测。群集扩展方法已被证明是研究无序晶体的宝贵工具。但是,由于计算成本,振动熵的影响通常被忽略。在这里,我们设计了一种方法,可以通过将机器学习力场(MLFF)拟合到群集扩展结构可用的松弛轨迹中,以低计算成本在集群扩展中包括振动自由能。我们演示了两个(伪)二进制系统的方法,Na 1 -x k x cl和ag 1 -x pd x,为此,准确的声子分散剂和振动自由能来自MLFF。对于两个系统,振动效应的包含导致在实验相图中与可见性差距明显更好地吻合。这种方法可以使振动效应在计算的相图中常规包含,从而更准确地预测了材料混合物的性能和稳定性。
采用特征模态分析法分析大坝结构响应,以捕捉无静水压力和流体动力的自由振动效应。然后,将使用模态响应分析纳入水库的影响。必须考虑激励频率和最小振动周期来选择积分的时间步长。根据美国陆军军团的描述,引入地震荷载时可以使用 0.01 秒的时间步长,这可以充分数字化加速度时间历史荷载。通常,可以使用振动模式的周期确定时间步长,使用 t≤T p /10,这将提供可靠的结果。这里使用 0.02 秒的时间步长来减少计算时间。
微针 (MN) 为提高透皮给药和诊断的有效性提供了一种有希望的解决方案。然而,大规模制造、部分 MN 渗透和不受控制的药物输送等挑战限制了该技术的有效性。为了克服这些挑战,当前的研究检查了皮肤应变和振动对 MN 插入和药物输送的影响。开发了一种新型多功能冲击涂抹器,用于改善皮肤插入,该涂抹器结合了皮肤拉伸、偏心旋转质量 (ERM) 和线性谐振致动器 (LRA) 微振动功能。此外,使用双光子聚合 (TPP) 和软压花工艺开发了一种用于溶解微针贴片 (DMNP) 的可扩展复制方法。当使用不同频率的 ERM 和 LRA 微振动应用时,DMNP 用于评估模型药物荧光素钠盐 (FSS) 的扩散和浓度。此外,还提出了一种新的计算机模拟方法,将微纳植入多层超弹性皮肤模型,并结合皮肤应变和振动效应。结果表明,施加皮肤应变和振动可降低微纳植入所需的力,并增强药物在皮肤中的溶解和扩散深度,从而提高微纳装置的药物渗透性和有效性。