我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
虽然首次提出模拟自然界量子力学的建议可以追溯到理查德·费曼 [1],但最近将量子信息理论应用于高能物理系统研究的尝试已证明特别成功。量子态断层扫描就是一个典型的例子,该过程通过对被观察系统的相同副本集合进行一系列互补测量,可以完全重建系统的密度矩阵 [2],非常适用于产生大量事件的对撞机 [3-6],并且已应用于各种高能粒子物理系统的数值模拟研究 [4-7]。包括量子机器学习技术在内的量子算法已被开发用于识别数据中的标准模型及以上特征 [8-10],以及以更经济的计算方式模拟对撞机事件 [11]。
Gabriele Travaglini 1, * *,Andreas Brandhuber 1,Patrick Dorey 2,Tristan McLoughlin 3,4,Samuel Abreu 5,6,Zvi Bern 7,N Emil J Bjerrum-bohr 8,Johannesblümlein,Johanne DUCA 14、15、16,Lance J Dixon 17,Daniele Dorigoni 2,Claude Duhr 18,Yvonne Geyer 19,Michael B Hermann,Enrico,Henrico 20 Rik Johansson 13,21,Gregory Porchemsky 11,22,David A Kosower 11,David A Kosower 11,Lionel 23,Lionel 23,Lionel 23,or o' 24,卢多维奇植物“
18岁以下的美国儿童至少有一位患有酒精使用障碍的父母(AUD)或其他物质使用障碍(SUDS),使他们患AUD,SUD和其他心理健康问题的风险更高(McCance-Katz,2018年)。父母对儿童的行为和大脑发育产生了遗传和社会环境的影响,并可以促进对AUD的风险和弹性(Bernier等,2012)。充分的证据表明,AUD患者的儿童发展AUD的可能性是其他儿童的四倍,强调了遗传风险的代际传播(例如Lipari&Van Horn,2017年)。研究表明,育儿行为对于塑造儿童的行为以及其大脑结构,功能和能力的有效发展也很重要。在几项研究中,暴露于儿童虐待和质量不佳的育儿与大脑发育的全球变化以及支持高级情绪和认知功能的巡回赛变化相关(Bick&Nelson,2016; Teicher等,2016)。纵向研究表明,早期的育儿质量与儿童大脑发育的前瞻性变化有关。例如,在整个童年时期经历了苛刻的育儿的青少年表现出不成熟的杏仁核模式
利用 Lehmann-Symanzik-Zimmermann 约化公式,我们提出了一种新的通用框架,用于以完全非微扰的方式使用量子计算机计算量子场论中的散射振幅。在这个框架中,只需要构建零动量的单粒子状态,不需要入射粒子的波包。该框架能够结合束缚态的散射,非常适合涉及少量粒子的散射。我们预计该框架在应用于独有的强子散射时会具有特殊优势。作为概念证明,通过在经典硬件上进行模拟,我们证明了在单味 Gross-Neveu 模型中,从我们提出的量子算法中获得的费米子传播子、连通费米子四点函数和费米子-反费米子束缚态的传播子具有实现 Lehmann-Symanzik-Zimmermann 约化公式所必需的所需极点结构。
摘要:对流感的治疗至关重要的是使用抗病毒药,例如Oseltamivir(Tamiflu)和Zanamivir(Relenza);但是,对于这些治疗剂而言,抗病毒药抗性正成为越来越多的问题。RNA依赖性RNA聚合酶酸性N末端(PA N)核酸内切酶是流感病毒复制机制的关键成分,是一个抗病毒靶标,最近经批准Baloxavir Marboxil(BXM)经过验证。尽管BXM取得了临床成功,但BXM表现出对抗性突变的敏感性,特别是PA n的I38T,E23K和A36 V突变体。为了更好地了解这些突变对BXM抗性的影响并改善了更健壮的治疗剂的设计,本研究研究了蛋白质 - 抑制剂与两个抑制剂的关键差异,以及I38T,E23K和A36 V突变体。通过使用两种生物物理方法测量与PA N结合的变化来评估抑制剂结合的差异。用野生型和突变形式的Pa n晶体学确定了两个不同抑制剂的结合模式。总的来说,这些研究对这些突变体的抗病毒抗性机理有了一些深入的了解。■简介流感病毒导致疾病的重大负担,仅在2018/19季节,在美国造成了约3550万例,500,000例住院和35,000例死亡。1个儿童和老年人群特别容易受到复杂的流感病例,占住院和死亡的最大百分比。3,42在19009年大流行期间,非药物干预措施(NPI),例如在家中订单,掩盖,社会疏远和增加的消毒措施在公共场所实现,以防止SARS-COV-2的传播。这也导致全球流感感染在2020/21和2021/22季节中大大减少,这对流感疫苗的年度重新印象产生了影响。重新制作在很大程度上取决于循环菌株的先前传染病季节的数据,以预测即将到来的流感季节最有效的疫苗组成。3因此,预测最佳2022/23疫苗的数据较少,这解释了2022/23季节观察到的流感的实质性复苏。
紧凑型和高速电光调节器在各种大规模应用中起着至关重要的作用,包括光学计算,量子和神经网络以及光通信链路。常规的电折射量器调节剂Suchassilicon(SI),III-VandGrapaPheneSissufferFromaFundAmentalTradeOffbetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetbetBetBetBetBetBetBetBetBetbetBetBetBetBetBetWeendevicElength和光损失限制了他们的缩放功能。高插条环谐振器被用作合并强度调节器,但是由于与相移相关的高插入损失,它们对相位调制的使用受到限制。在这里,我们表明,高核谐振器可以通过同时调制折射率的真实和虚构部分,从而在相同的程度上,即1 N
1 LG 电子多伦多人工智能实验室,加拿大安大略省多伦多 M5V 1M3 2 多伦多大学化学系,加拿大安大略省多伦多 M5G 1Z8 3 多伦多大学计算机科学系,加拿大安大略省多伦多 M5S 2E4 4 威斯康星大学麦迪逊分校化学系,美国威斯康星州麦迪逊市 1101 University Ave. 53706 5 威斯康星大学麦迪逊分校物理系,美国威斯康星州麦迪逊市 1150 University Ave. 53706 6 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06520-8263 PO Box 208334 7 耶鲁大学化学系,美国康涅狄格州纽黑文 06520 PO Box 208107 8 萨里大学数学系,英国吉尔福德 9 能源耶鲁大学科学研究所,邮政信箱 27394,康涅狄格州西黑文 06516-7394,美国 10 加拿大安大略省多伦多人工智能矢量研究所,邮编 M5S 1M1 11 加拿大安大略省多伦多高级研究所,邮编 M5G 1Z8,加拿大 ∗ 任何通信均应发送给作者。
摘要:众所周知,具有自适应机制已知。视觉也不例外,其灵敏度的输入依赖性变化。最近的动物工作表明,视觉皮层中神经元之间的连通性增强。本实验的目的是评估一种人类模型,该模型通过快速的视觉刺激来无创地改变人类视觉皮层中N1b成分的振幅。十九个参与者(M = 24岁;男性为52.6%)完成了涉及在视觉场中双侧呈现的黑白逆转棋盘的快速视觉刺激范式。eeg数据,该数据由四个主要阶段,tetanus块,光刺激,tetanus早期和tetanus组成。计算了t前,tetanus的N1b成分的幅度,te虫早期的tetanus和tetanus后期视觉诱发电位。通过从tetanus早期和晚期减去teTanus n1b振幅来计算N1b振幅的变化。结果表明,前tetanus n1b(M = -0.498 µ V,SD = 0.858)和N1B早期(M = -1.011 µ V,SD = 1.088),T(18)= 2.761,P = 0.039,D = 0.633,在tetanus n1b和n1b晚期之间没有观察到差异(p = 0.36)。总而言之,我们的发现表明,有可能诱导人类视觉上的视觉诱发潜在的N1b波形的幅度变化。如果是这样,这将允许检查增强的神经连通性及其与多种人类感觉刺激和行为的相互作用。还需要进行其他工作来证实这项研究中观察到的N1b成分的增强是由于在先前动物研究中观察到的大脑认知结构中表现出的长期增强神经联系所必需的相似机制。
广义振幅阻尼通道 (GADC) 是基于超导电路的量子计算中的噪声源之一。它可以被视为玻色子热通道的量子比特类似物,因此可用于在低温系统存在背景噪声的情况下对有损过程进行建模。在这项工作中,我们对 GADC 进行了信息论研究。我们首先确定 GADC 纠缠破坏的参数范围以及可抗降解的范围。然后,我们为其经典、量子和私有容量建立了几个上限。这些界限基于数据处理不等式和信息论量的均匀连续性以及其他技术。我们对 GADC 量子容量的上限比最近在 [Rosati et al ., Nat. Commun. 9, 4339 (2018)] 中报道的 GADC 整个参数范围的已知上限更严格,从而缩小了下限和上限之间的差距。我们还建立了 GADC 的双向辅助量子和私有容量的上限。这些界限基于压缩纠缠,并通过构建特定的压缩通道来建立。我们将这些界限与最大 Rains 信息界限、互信息界限和另一个基于近似协方差的界限进行比较。对于所有考虑的容量,我们发现各种技术都可用于建立界限。