在概念设计期间,预测抖振起始边界时会出现一个问题。由于有效载荷航程和巡航高度能力面临的压力,改善抖振起始边界往往非常重要。它是确定运输机低音速和跨音速性能的主要限制之一。抖振是一种由气流分离或冲击波振荡引起的高频不稳定性,可看作是一种随机受迫振动。根据攻角和自由流速度,气流分离可产生气动激励。后缘的分离边界层会产生湍流尾流,如果此尾流撞击水平尾翼面等,抖振就会影响飞机结构的尾部。由于抖振会限制设计升力系数,因此可能会限制飞机的最大升阻比和运行上限。这意味着,如果没有准确考虑抖振,设计师进行的性能计算可能与飞机的实际性能不符,因为 Breguet 射程方程和耐久性方程都是升力和阻力特性的函数。简而言之,本论文研究的主要动机是创建一种更先进但快速的跨音速抖振起始预测工具,以便在概念设计阶段实现更大的设计自由度。这意味着该工具应该比传统工具更快,它应该可靠并且能够处理非常规配置。此外,它应该以模块化方式构建,以便于使用、更改和更换工具的部件。
声子的探测对于研究共振耦合的磁振子与声子的相互转化至关重要。本文我们报道了通过微聚焦布里渊光散射在 Ni/LiNbO 3 混合异质结构上直接可视化磁振子和声子的共振耦合。表面声子的静态图样源于入射波 𝜓 0 (𝐴 0 , 𝒌, 𝜑 0 ) 与反射波 𝜓 1 (𝐴 1 , −𝒌, 𝜑 1 ) 之间的干涉,由于磁振子-声子耦合,磁场可以调制表面声子的静态图样。通过分析从布里渊光谱中获得的声子信息,可以确定磁振子系统(Ni 薄膜)的性质,例如铁磁共振场和共振线宽。该结果提供了关于耦合磁振子-声子系统中声子操控和检测的空间分辨信息。
图 1. (a) 单个 CrSBr 层晶体结构的顶视图。青色、黄色和粉色球分别代表铬、硫和溴原子。连接 Cr 原子的箭头表示第一、第二和第三邻域的 J 1 、 J 2 和 J 3 磁交换相互作用。 (b) 相同 CrSBr 结构的侧面图,显示沿 b 的自旋方向。 (ch) 计算的最大局部化 Wannier 轨道。绿色箭头表示最相关的磁性超交换通道,即 J 1 (c、f)、J 2 (d、g) 和 J 3 (e、h) 的 t 2g -eg (FM)、t 2g -t 2g (AFM) 和 eg -eg (AFM)。
连续变量(CV)系统在实现通用量子计算的实现中引起了越来越多的关注。最近的一些实验表明,使用CV系统将值编码为捕获的离子机械振荡器并执行逻辑门的可行性[C. C. Flühmann等。,自然(伦敦)566,513(2019)]。必不可少的下一步是保护编码的量子函数免受量子反应的影响,例如,由于机械振荡器及其环境之间的相互作用而引起的运动反应性。在这里,我们提出了一种方案,以抑制单模谐波振荡器的量子反应性,该方案是通过引入非逆势泄漏消除操作员(LEO)的特定设计来编码Qubits的。值得注意的是,我们的非扰动狮子座可用于分析无近似值的精确运动方程。它还允许我们证明这些LEO的有效性仅取决于时间域中的脉冲序列的积分,而脉冲形状的详细信息在适当选择时间段时并没有显着差异。此控制方法可以在任意温度和任意系统轴耦合强度下应用于系统,这使其对于一般的开放量子系统非常有用。
可调振荡器的闪烁噪声是一个特殊问题,需要使用可调振荡器来捕获接收信号。直接数字合成 (DDS) 为这个问题提供了一个现成的解决方案,但可能会引入不需要的杂散信号产物。本文介绍了一种将这些产物降低到普遍令人满意的水平的新型专利方法,这确保了所提出的新型集成发射机合成器方法的可行性。为了在微波频率下从 DDS 提供合成的本地振荡器,必须使用一些额外的技术。本文介绍了一种使用阶跃恢复二极管 (SRD) 的方法。本文介绍了一项深入研究,表明
低维系统和近量子相变中的量子涨落对材料特性有显著的影响。然而,很难通过实验衡量量子涨落的强度和重要性。这里,我们提供了 Mott 绝缘铜酸盐中磁振子激发的共振非弹性 X 射线散射研究。从 SrCuO 2 薄膜中,推导出单磁振子和双磁振子色散。使用由 Hubbard 模型生成的有效海森堡哈密顿量,我们表明,只有在包含源自磁振子-磁振子相互作用的显著量子校正时,才能令人满意地描述单磁振子色散。对 La 2 CuO 4 的比较结果表明,SrCuO 2 中的量子涨落要强得多,表明更接近磁量子临界点。蒙特卡罗计算表明,其他磁序可能与反铁磁尼尔序竞争基态。我们的结果表明,由于强烈的量子涨落,SrCuO 2 是探索新磁基态的独特起点。
影响无人机监视系统所捕获图像质量的最关键因素之一是从飞机传递到万向架的振动。无人机中使用的万向架是必不可少的设备,它可以稳定而准确地固定住摄像机并将其指向所需的方向。在本文的范围内,为微型无人机中使用的双轴光电万向架进行了被动隔振系统设计。通过在不同方法中选择弹簧阻尼器系统,使用分析方法进行了在单轴上隔离平台谐波振动的设计。使用分析方法创建了沿单轴隔离平台谐波振动的设计。此外,包含该减震系统的部件“Pan Yoke”采用计算机辅助设计程序进行设计,并使用 Ansys 模态分析检查固有频率值。已确定从飞行器传递到万向架的振动频率和设计部件的固有频率彼此接近,约为 200 Hz。通过各种设计更改和拓扑优化对该部件的固有频率值进行了优化,以防止部件发生共振。
检测磁振子及其量子特性,尤其是在反铁磁 (AFM) 材料中,是实现纳米磁性研究和节能量子技术发展中许多雄心勃勃的进步的重要一步。最近基于超导电路的混合系统的发展为设计利用不同自由度的量子传感器提供了可能性。在这里,我们研究了基于二分 AFM 材料的磁振子-光子-传输子杂化,这导致了二分 AFM 中传输子量子比特和磁振子之间的有效耦合。我们展示了如何通过超导传输子量子比特的 Rabi 频率来表征磁振子模式、它们的手性和量子特性,例如二分 AFM 中的非局域性和双模磁振子纠缠。
1 普渡大学电气与计算机工程学院,美国印第安纳州西拉斐特 47906 2 普渡大学 Birck 纳米技术中心,美国印第安纳州西拉斐特 47906 3 伊利诺伊大学香槟分校电气与计算机工程系,美国伊利诺伊州厄巴纳 60801 4 伊利诺伊大学香槟分校 Nick Holonyak, Jr. 微纳米技术实验室,美国伊利诺伊州厄巴纳 61801 5 普渡大学物理与天文系,美国印第安纳州西拉斐特 47906 6 英特尔公司组件研究部,美国俄勒冈州希尔斯伯勒 97124 7 普渡大学普渡量子科学与工程研究所 (PQSEI),美国印第安纳州西拉斐特 47906 8 奥胡斯物理与天文研究所和 Villum 混合量子材料与器件中心大学,8000 奥胡斯-C,丹麦 9 东北大学 WPI-AIMR 国际材料科学研究中心,仙台 980-8577,日本 10 量子科学中心 (QSC),美国能源部 (DOE) 国家量子信息科学研究中心,橡树岭国家实验室,美国田纳西州橡树岭 37831