摘要 焦虑影响着全球大约 5-10% 的成年人口,给卫生系统带来了沉重的负担。尽管焦虑无处不在,并且对身心健康产生影响,但大多数受焦虑影响的人都没有得到适当的治疗。精神病学领域的当前研究强调需要识别和验证与这种疾病相关的生物标记。神经生理学临床前研究是一种确定大脑节律的主要方法,可以作为焦虑主要特征的可靠标记。然而,虽然神经影像学研究一致表明前额叶皮层和皮层下结构(如杏仁核和海马)与焦虑有关,但对于导致这种疾病的潜在神经生理过程仍缺乏共识。允许非侵入性记录和评估皮质处理的方法可能有助于识别可用作干预目标的焦虑特征。在本研究中,我们将源功率共调节 (SPoC) 应用于具有不同程度焦虑特质的参与者样本的脑电图 (EEG) 记录。 SPoC 的开发是为了寻找空间滤波器和模式,这些滤波器和模式的功率与个体参与者的外部变量共同调节。所获得的模式可以从神经生理学角度进行解释。在这里,我们将 SPoC 的使用扩展到多受试者环境,并使用具有真实头部模型的模拟数据测试其有效性。接下来,我们将 SPoC 框架应用于 43 名人类参与者的静息状态脑电图,这些参与者的特质焦虑评分可用。SPoC 对窄频带数据的受试者间分析揭示了具有神经生理学意义的 θ 波段(4-7 Hz)空间模式,这些模式与焦虑呈负相关。结果特定于 θ 波段,在 alpha(8-12 Hz)或 beta(13-30 Hz)频率范围内未观察到。θ 波段空间模式主要位于额上回。我们讨论了我们的空间模式结果对于寻找焦虑生物标志物的相关性及其在神经反馈研究中的应用。
人类天生就是社会性动物,社会环境对大脑发育有很大影响。因此,即使在没有明确任务或指示的情况下,人类大脑也会对社交信息做好准备并保持敏感。在本研究中,我们研究了不同程度的人际接近度对静息状态大脑活动及其与社会认知的关联的影响。我们对 13 名正常发育 (TD) 成年人进行脑电图测量,他们分别坐在不同的房间、背对背坐在同一个房间以及面对面坐在同一个房间。人际接近度调节了 4 – 55 Hz 的宽带脑电图功率,而自我报告的社会认知的个体差异调节了 beta 和 gamma 频带中的这些影响。这些发现通过双脑脑电图记录为社会环境对大脑活动及其与社会认知关联的影响提供了新的见解,并证明了使用交互式方法研究人类大脑的重要性。
摘要 这篇理论文章旨在发展关于在细胞水平上调节共享意向性的认识。关于共享意向性过程中的神经生物学过程的假设认为,这种前感知交流通过生态系统中的非局部神经元耦合发生,可以描述为母胎交流模型。当前的理论研究分析了文献,讨论了关于振荡对神经元时间协调影响的最新发现,以验证外部低频振荡是否只能同步来自外周和中枢神经子系统的特定局部神经元网络以调节共享意向性。该综述讨论了 4 个发现。首先,伽马振荡与局部细胞集合的时间协调有关。其次,低频脑振荡与外周和中枢神经子系统的时间协调之间存在关系。第三,δ振荡通过调节伽马活动来影响神经元活动。第四,外部 delta 和 gamma 振荡会增加皮质兴奋性。文章的结论是,delta 振荡可以调节神经系统不同子系统中的 gamma 振荡,从而提供时间网络协调。外部低频振荡器只能协调已表现出 gamma 活动的各个子系统中的相关局部神经元网络。
本研究提出了一种通过技术计算机辅助设计(TCAD)模拟评估振荡条件的新方法,并基于使用TCAD仿真结果计算的信号流图模型和散射参数(S-参数)。使用所提出的方法研究了短路时,碳化硅(SIC)金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化型晶体管效应晶体管(MOSFET)。使用该技术计算电路的振荡条件,并与TCAD瞬态模拟计算的振荡条件进行了比较。这些方法之间的栅极电阻抑制振荡。此外,该方法还应用于估计由相反连接的SIC MOSFET组成的电路的稳定性。考虑了两种振荡模式。我们证明,可以使用简单的计算来计算抑制寄生振荡所需的电路参数。
图 1. 实验设计。A:试验设计。听觉和视觉刺激同时呈现。听觉间隙检测任务:参与者必须在白噪声 7 秒内检测到间隙(间隙可能发生在 4-6 秒的时间窗口内)。对于“困难”条件,间隙持续时间单独滴定至 75% 正确。对于“简单”条件,间隙持续时间加倍。多物体跟踪任务:参与者观看 16 个移动点,并被要求在移动点场景中跟随最初提示的(红色)点。7 秒后,点停止移动,三个点被标记为绿色,并标为 1、2 和 3。参与者必须决定三个点中的哪一个是提示点。参与者必须跟随一个(简单)或五个(困难)点。分析集中在 3-4 秒的时间窗口(间隙前窗口;此外,由于其反应缓慢,还关注 5-6 秒的瞳孔大小窗口)。 B:单任务会话(左)和双任务会话(右)的设计。在单任务会话中,参与者分别执行听觉和视觉任务(但始终呈现视听刺激)。在双任务条件下,参与者同时执行这两项任务。C:假设示意图。如果生理测量指标独立于模态来指示认知需求,则难度增加的影响在各种模态之间应该是相同的(左图)。或者,难度增加的影响可能在不同的感官模态之间有所不同(右图)。
帕金森运动症状与基底神经节中病理上增加的β振荡有关。虽然药理学治疗和深脑刺激(DBS)降低了这些病理振荡,并随着运动性能的提高而降低了这些病理振荡,但我们着手探索神经反馈作为内源性调节方法。我们通过植入的DBS电极实施了病理性亚丘脑β振荡的实时处理,以提供深脑电气神经反馈。患者在训练后几分钟内通过视觉神经反馈进行了视觉控制的β振荡活动。在一次单小时的训练中,β振荡活动的减少逐渐变得更强大,我们观察到了运动性能的提高。最后,即使去除视觉神经反馈后,对深脑活动的内源性控制也是可能的,这表明在短期内保留了神经反馈获得的策略。此外,我们观察到2天后学习的心理策略在没有神经反馈的情况下进行了改善。进一步训练深脑神经反馈可能会通过使用神经反馈优化的策略来改善症状控制,从而为帕金森患者提供治疗益处。
深部脑电神经反馈可使帕金森病患者控制病理振荡并加快运动 作者:Oliver Bichsel 1,2,3,4、Lennart H. Stieglitz 3,4、Markus F. Oertel 3,4、Christian R. Baumann 2,4、Roger Gassert* 1、Lukas L. Imbach*、2,4(*共同资深作者) 1. 瑞士苏黎世联邦理工学院健康科学与技术系康复工程实验室 2. 瑞士苏黎世大学医院神经内科 3. 瑞士苏黎世大学医院神经外科 4. 瑞士苏黎世大学医院临床神经科学中心 摘要 帕金森病运动症状与基底神经节病理性增加的 β 振荡有关。虽然药物治疗和深部脑刺激 (DBS) 可以同时减少这些病理性振荡和改善运动表现,但我们着手探索神经反馈作为一种内源性调节方法。我们实施了深部脑电神经反馈,通过植入的 DBS 电极测量病理性丘脑底振荡的实时视觉神经反馈。所有 8 名患者在训练后几分钟内有意识地控制持续的 β 振荡活动。在一次一小时的训练中,β 振荡活动的减少逐渐增强,并加速了手部运动。最后,即使在去除视觉神经反馈后,仍然可以对深部脑活动进行内源性控制,这表明神经反馈获得的策略在短期内得以保留。当 2 天后应用学到的心理策略时,我们观察到了类似的运动改善。即使在没有实时神经反馈的情况下,进一步改善深部脑神经反馈可能会通过改善症状控制使帕金森病患者受益。关键词:β 能量、深部脑刺激、神经反馈、局部场电位、运动迟缓、帕金森病
图1相位振幅耦合分析。(a)在收听duple/triple节奏(顶部)时,脑电图(底部)的频谱。(b)最高数字在2-30 Hz的频率范围内呈现了六个基础序列过程中的功率调制。底部图显示了3 Hz窄带滤波后的频率范围7-12 Hz(基线校正)的平均功率波动,以更好地可视化。(c)PAC强度(左)强度的地形分布以及耦合的首选阶段(右;绿色代表Alpha功率阶段引导刺激阶段)在频率范围7-12 Hz中与BEAT(由模拟的3 Hz正弦曲线建模的频率范围7-12 Hz)的功率平均。点代表簇,其中PAC与替代数据相比具有重要意义。
对每个 TMS-EEG 记录位点进行包含受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)的方差分析。皮质振荡分析按以下步骤进行。我们首先评估基线(T0)的伽马振荡的频率和功率。为了测试 iTBS + tACS 方案是否可能导致伽马波段在振荡功率方面发生任何变化,我们使用了包含受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)的重复测量方差分析。然后我们专注于单个频率变化分析;我们计算了单个频率峰值(整个振荡频谱中表达最多的频率),并且与伽马波段功率分析相同,我们使用了重复测量方差分析,其中受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)来评估波段表达的变化。对于
神经振荡,自发发生以及大脑从事任务的振荡活动的节奏模式,在功能网络内部和跨功能网络的神经交流中起着至关重要的作用。在感觉运动网络中,MU(8-13 Hz)中的振荡,β(13.5-25 Hz)和γ(30-90 Hz)频率范围通常会锁定为运动开始时,并且在逐渐振幅(desynchroncrization)中逐渐降低(ERNCHRONING)(ERCHRORINCER)(ERCHRORCH)(ERCHRORCH)(ERCHRORCH)(ERNCHRORIAN)的特征(ERNCHRORINCER)(ERNCH)(ERNCRORIN)(ERNCRORINCERNINCERRORN)(ERNCRORCH)(EVENTRORIN)(EVENTRORIN)。尽管他们的功能作用仍在争论中,但MU,Beta和γ振荡在几种神经精神病学条件下发生了改变(Peter等,2022),并被认为与感觉运动控制,学习和可塑性有关(Pfurtscheller and Lopes da Silva da Silva,1999; 1999; Engel and Frard; ghillies; ghillies; ghillies;该研究主题展示了有关皮质振荡在运动控制和学习中的作用以及这种知识的转化适用性的研究。它包含涉及实验和方法研究和文献综述的五篇文章。