摘要乳腺癌是一种威胁生命的疾病,具有严重的健康影响。它是基于受体分类的,包括雌激素受体(ER)和人表皮生长因子受体2(HER2),这是我们从从功能基因组储存库中获得的数据分析的本研究的重点。登录数为E-GEOD-52194,E-GEOD-75367和E-GEOD-58135,以及这些癌症受体子集的分子细节。遵循预先确定的计算管道后,我们识别了369个基因,这些基因在ER阳性(ERÞ)和HER2阴性(HER2-)乳腺癌的情况下具有不同的基因表达pro纤维模式。支持向量机(SVM)和机器学习的决策树模型用于评估预后和诊断意义。的准确性,敏感性和特定的林区,以评估这些模型的有效性。然后,进行了网络分析,以评估HER2-和ER乳腺癌发展的显着生物过程和信号传导途径。本研究促进了对这些乳腺癌子类别的增强方法,因此可以进行精确的诊断,并可以提供更好,更专注的治疗计划。当前的研究提供了有关ER er和HER2-乳腺癌的分子和遗传基础的有价值的信息,并具有改善患者治疗的巨大潜力。
1.) 经食管内镜胃成形术(胃折叠术、经口无切口胃底折叠术 [TIF])是一种门诊手术。在此过程中,胃底被折叠,然后用设备部署的钉书钉或紧固件固定到位。内窥镜手术旨在重建瓣膜和反流屏障。2.) 射频能量已用于在胃食管连接处产生粘膜下热损伤。(该技术被称为 Stretta 手术。)具体而言,射频能量通过插入食管壁鳞柱交界处上方和下方多个位置的 4 个电极施加。作用机制尚不清楚,但可能与负责括约肌松弛的神经通路消融有关,或可能引起与热诱导胶原收缩和纤维化相关的组织紧缩效应。 3.) 还研究了通过粘膜下注射或植入假体或填充剂来增加下食管括约肌的体积。已经对一种填充剂——热解碳涂层氧化锆球 (Durasphere) 进行了评估。Gatekeeper™ 反流修复系统 (Medtronic) 采用由聚丙烯腈基水凝胶制成的柔软、柔韧、可膨胀的假体。假体植入食管粘膜下层,随着时间的推移,假体吸收水分并膨胀,在植入区域形成体积。然而,唯一确定的 RCT 因缺乏疗效而提前终止,并由制造商自愿撤回。还研究了将聚甲基丙烯酸甲酯珠子植入下食管皱褶的内镜粘膜下层。监管状态 EsophyX® (EndoGastric Solutions) 是一种 TIF 设备,于 2007 年获得 510(k) 营销许可,可用于全层折叠术。2016 年,带有 SerosaFuse 紧固件的 EsophyX® Z 设备通过 510(k) 流程获得 FDA 营销许可 (K160960),可用于经口组织对合、全层折叠术、胃肠道结扎、缩小胃食管连接处以及减少有症状的慢性胃食管反流病 (GERD) 患者 2 厘米或以下的食管裂孔疝。2017 年 6 月,EsophyX2 HD 和带有 SerosaFuse 紧固件和配件的第三代 EsophyX Z 设备通过 510(k) 获得 FDA 营销许可
ERTICAL -外腔面发射激光器 (VECSEL) 因其能够在很宽的波长范围内产生高功率高亮度发射而备受关注 [1]。半导体增益的固有波长多功能性与开放式谐振腔相结合,可以实现从紫外到中红外的基波和频率转换发射 [2]。然而,VECSEL 的技术发展并未均匀分布在所有波长区域,导致某些光谱窗口的覆盖效果不佳。700-800 nm 范围就是一个例子,它最近因在生物光子学 [3]、医学 [4] 和光谱学 [5] 中的应用而引起了人们的关注。此外,该波长范围的频率倍增为紫外发射开辟了新的途径,原子分子和光学物理学可以从窄线宽可调谐激光器中受益,可用于原子冷却和同位素分离 [6]。
图像综合方法,例如生成对抗性网络,已成为医学图像分析任务中数据增强的一种形式。克服公共访问数据和提出质量注释的短缺主要是有益的。然而,当前技术通常缺乏对产生的疾病中详细内容的控制,例如疾病模式的类型,病变的位置以及诊断的属性。在这项工作中,我们在生成模型(即扩散模型)中适应了lat-est Advance,并使用使用特异性的视觉和文本提示来生成皮肤镜图像,并使用添加的控制流。我们进一步证明了基于扩散模型的框架比古典生成模型的优势在图像质量和提高皮肤病变上的分割性能方面的优势。它可以使SSIM图像质量度量增加9%,而骰子系数比以前的艺术增加了5%。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
哺乳动物脑中的神经元不限于释放单个神经递质,而是通常将神经递质的神经递质释放到突触后细胞上。在这里,我们回顾了整个哺乳动物中枢神经系统中发现的多晶月神经元的最新发现。我们重点介绍了最新的技术创新,这些创新使新的多晶镜神经元及其突触特性的研究成为可能。我们还专注于轴突末端和突触囊泡上神经递质corelease所需的机制和分子成分,以及多种晶状体神经元在多种脑电路中的一些可能功能。我们期望这些方法将导致对多晶镜神经元的机制和功能的新见解,它们在电路中的作用以及它们对正常和病理大脑功能的贡献。
附加课程信息:每年 8 月招收一批 25 名学生。每门视力保健技术课程的最终成绩必须达到“C”或更高,才能继续参加课程。退出或被取消视力保健技术课程的学生应参考学院政策 6Hx2-5.33 和程序 A6Hx2-5.33 关于重新进入健康科学课程和/或课程指南。重新进入课程将取决于是否有空位。只允许一次重新进入。重新进入的学生必须在每门视力保健技术课程中保持“C”或更高的成绩才能继续参加课程。重新进入后在任何课程中获得“D”或“F”成绩的学生将导致永久被 BC 视力保健技术课程开除。*技术证书代表学位课程内特定健康科学课程的子集,不会作为独立证书颁发给学生用于就业目的。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。