抽象的超分辨率(SR)是一个不当的反问题,其中具有给定低分辨率图像的可行解决方案集的大小非常大。已经提出了许多算法,以在可行的解决方案中找到一种“好”解决方案,这些解决方案在忠诚度和感知质量之间取得了平衡。不幸的是,所有已知方法都会生成伪影和幻觉,同时试图重建高频(HF)图像细节。一个有趣的问题是:模型可以学会将真实图像细节与文物区分开吗?尽管有些重点侧重于细节和影响的分化,但这是一个非常具有挑战性的问题,并且尚待找到满意的解决方案。本文表明,与RGB域或傅立叶空间损耗相比,使用小波域损失功能训练基于GAN的SR模型可以更好地学习真正的HF细节与伪像的表征。尽管以前在文献中已经使用了小波域损失,但在SR任务的背景下没有使用它们。更具体地说,我们仅在HF小波子带上而不是在RGB图像上训练鉴别器,并且发电机受到小波子带的忠诚度损失的训练,以使其对结构的规模和方向敏感。广泛的实验结果表明,我们的模型根据多种措施和视觉评估实现了更好的感知延续权权衡。
髓磷脂是一种由中枢神经系统(CNS)中的少突胶质细胞的延伸质膜形成的多层结构(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann等,2019)。它会围绕轴突充分包裹,从而产生主要由脂质(70-85%)和蛋白质(15–30%)组成的鞘,它们共同提供电绝缘。脂质成分,包括胆固醇,磷脂和糖脂,使髓磷脂具有绝缘性,而髓磷脂碱性蛋白(MBP)和蛋白质脂质蛋白(PLP)(PLP)(PLP)(PLP)稳定并稳定并压缩层。PLP还将胆固醇分流到髓磷酸室(Werner等,2013)。髓鞘鞘分为节间,它们是沿轴突髓磷脂紧密压实的区域。这些由富含电压门控离子通道的轴突的Ranvier的节点分开。这个结构性组织允许盐分传导,其中仅在节点上仅重新再生动作电位,同时降低了神经元活性的能量需求,从而显着提高了信号传播速度(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann et al。,2019年)。髓磷脂在确保沿轴突的快速有效信号传递来确保动作电位的精确同步方面起着关键作用。这种同步整合了各种兴奋性和抑制性输入,从而实现了神经元通信的准确时机。通过保持动作电位的速度和保真度,髓磷脂支持复杂的神经回路的协调,这对于适当的神经网络功能和过程(例如感觉知觉,运动控制和认知)至关重要。髓磷脂结构的小改变可以促进或破坏动作电位的同步,从而影响神经回路功能(Bonetto等,2021; Monje,2018; Xin and Chan,2020)。
基于扩散的生成模型最近在语音增强(SE)方面获得了研究,为常规监督方法提供了替代方案。这些模型将干净的语音训练样本转化为高斯噪声,通常以嘈杂的语音为中心,随后学习了一个典型的模型以扭转这一过程,从而有条件地在嘈杂的语音上。与受监督的方法不同,基于生成的SE通常仅依赖于无监督的损失,这可能会导致条件嘈杂的语音效率较低。为了解决这个问题,我们提议以ℓ2的损失来增加原始的扩散训练目标,以测量地面真相清洁语音与每个扩散时间阶段的估计之间的差异。实验结果证明了我们提出的方法的有效性。
进行性非综合性感觉性听力损失(PNSHL)是造成感觉障碍的最常见原因,影响了65岁以上的三分之一以上的个体。PNSHL包括噪声引起的听力损失(NIHL)和遗传性耳聋形式,其中包括延迟发作的常染色体显性听力损失(AD PNSHL)。pnshl是基因疗法的主要候选日期,因为已经对PNSHL进行了广泛的研究,并且在疾病的鉴定与听力损失的发作之间存在一个潜在的较宽窗口。存在几种基因治疗策略,显示出靶向PNSHL的潜力,包括病毒和非病毒方法,以及基因编辑与基因调节方法。充分探索这些疗法策略的潜力,这是人类的体外模型
基于表1中的数据源以及计算和结果部分中的计算方法,与进口NG相关的总估计的州外温室气体排放量在2018 - 2022年(图3中的蓝线)中有所下降。这种趋势的主要原因是美国EPA在时间序列(顶级灰线)中估计的排放强度降低。此外,从2021 - 2022年开始注意到NG进口体积的少量减少,这也导致排放减少。对于100年和20年的GWP都是如此,尽管图3仅显示了100年GWP的结果。
与年龄相关的神经退行性疾病涉及细胞数量减少和行为能力受损。神经变性和行为缺陷在衰老期间也出现,尤其是在没有疾病的情况下。调节运动和认知的小脑容易受到衰老和疾病的细胞损失。在这里,我们证明了老年小鼠的小脑Purkinje细胞损失在空间上不是随机的,而是出现在旁皮条纹的模式下。我们还发现,与年轻小鼠相比,老年小鼠的运动配位受损和更严重的震颤。然而,图案化的Purkinje细胞损失与运动功能障碍之间的关系并不简单。对神经学典型个体的人类小脑的死后样本的检查支持在衰老期间的选择性丧失Purkinje细胞的存在。这些数据揭示了小脑衰老的时空细胞底物,可以告知神经元脆弱性如何导致神经变性和随之而来的行为恶化。
•气候承诺不足:当前称为国家确定的贡献(NDC)的气候承诺不足以满足巴黎协定目标。如果完全实施,它们只会将全球变暖限制为2.6-2.8°C 2100。•需要增加雄心壮志:为了将变暖限制为1.5°C,到2030年,必须将全球温室气体排放量降低42%,到2035年,与2019年的水平相比,到2035年的水平必须减少57%。对于2°C的目标,到2030年,排放需要减少28%。•技术潜力:通过对太阳能/风能,林业,建筑改革,运输和工业的投资,减少排放的潜力很大。•二十国集团的作用:发射最大的二十国集团国家必须导致减少排放。•需要快速行动:国家必须迅速增加其气候承诺并实施它们,以避免灾难性的变暖。一定程度的每一部分都在挽救,保护经济和生物多样性的生命方面重要。
气候变化、流行病和地缘政治冲突的汇聚不断给粮食、水、材料和能源等重要资源造成压力,使农业系统面临巨大风险(Galanakis 等人,2022 年;Farooq 等人,2022 年;Saxena 等人,2018 年)。新冠肺炎等全球危机暴露了全球粮食系统的脆弱性,强调需要通过让所有利益相关者参与的多层次方法提高复原力(Alam 等人,2023 年;Boyac ι-Gündüz 等人,2021 年)。自 2022 年以来,俄罗斯-乌克兰战争等冲突扰乱了全球化肥和农产品市场,加剧了粮食不安全状况(Esfandabadi 等人,2022 年;粮农组织,2022a、b)。这些干扰导致粮食价格上涨,粮食获取减少,尤其是在低收入、缺粮国家(粮农组织等,2024 年)。与此同时,粮食浪费仍然是一个全球性问题:2022 年,消费者可获得粮食的 19% 被浪费,其中拉丁美洲和加勒比地区占 6% [联合国环境规划署 (UNEP),2024 年]。经济冲击和极端天气事件进一步加剧了脆弱性 [联合国环境规划署 (UNEP),2024 年]。在拉丁美洲和加勒比地区,小农户是农业经济的支柱,这些挑战尤为严峻,但这些农民用来缓解这些挑战的策略仍未得到充分探索(Galanakis,2023 年)。小农户对全球粮食安全至关重要。然而,环境、经济和社会干扰加剧了他们的脆弱性,导致大量粮食损失 [粮农组织,2019 年;联合国环境规划署 (UNEP),2021 年]。祖传的农业实践世代相传,将可持续资源管理与文化价值观相结合,成为替代解决方案。这些做法增强了对气候变化和环境退化的适应力,同时确保了生态、文化和社会的可持续性(粮农组织,2023 年)。然而,仅靠这些传统方法不足以解决现代粮食系统的复杂性。将祖先知识与现代技术相结合的混合模式可以在提高生产力、资源效率和适应力的同时保留文化优势(粮农组织,nd)。这凸显了转变粮食系统以实现更大的可持续性和适应力的迫切需要(Galanakis 等人,2021 年;Seekell 等人,2017 年)。生产和消费的循环经济 (CE) 模式提供了一条有希望的途径(Weetman,2019 年)。转型粮食供应链 (FSC) 以降低波动性和增强韧性对于传统和过渡性粮食供应链尤为重要,因为这些供应链受外部冲击的影响尤为严重 (粮农组织等,2024 年;Galanakis,2023 年)。尽管对更广泛的粮食损失挑战和 CE 模型进行了广泛的研究,在理解小农如何整合弹性、循环和可持续的实践以减少粮食损失方面仍然存在巨大差距,特别是让 FSC 的所有利益相关者参与其中(Ume 等人,2023 年;Boyac ι-Gündüz 等人,2021 年;Devereux 等人,2020 年)。这种差距在秘鲁等农业实践深深植根于当地传统的国家尤为明显。
NGFS有序场景=高短期过渡风险,身体风险降低;无序=中等过渡和身体风险;热门=低过渡风险,高物理风险。身体风险涵盖了慢性影响(温度变化,海平面上升)以及急性影响(洪水,热浪或干旱)。过渡风险包括与向低碳经济过渡相关的风险。来源:NGFS,EBA,范围评分
1 伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙伦敦大学学院,伦敦大学学院,伦敦WC1E 6BT,英国2年生命科学学院,四川大学,成都610065,中国3 RSPB保护科学中心,桑迪,贝德福德郡SG19 2DL,英国英国4环境和可持续发展研究所,Exeren Camp,Exeren Camp,Exerus,Exere tress 9fie,Exery tress,Exere and exeter tress,Exery tress,瑞典科学学院,斯德哥尔摩114 18,瑞典6斯德哥尔摩韧性中心,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩106 91,瑞典7 7研究中心,生态变化研究中心,生物和进化生物学研究计划,生物学与环境科学系,赫尔辛基大学,赫尔辛基大学纽约市纽约市纽约市纽约市纽约市纽约市, Ciencias Naturals,马德里28006,西班牙