由于金属箔表面粗糙而导致的导体损耗对为 10+ Gbps 网络设计的背板走线上的高速信号传播有显著影响。本文提出了一种评估这些影响(包括信号衰减和传播相速度)的实用方法。假设周期性结构来模拟粗糙度轮廓的形态。从光栅表面波传播常数中提取等效表面阻抗来模拟粗糙度。因此,可以在传统的衰减常数公式中使用这种修改后的表面阻抗来计算实际导体损耗。使用全波仿真工具和测量验证了该方法,并表明能够在 0.2 dB/m 相对误差内提供可靠的结果。
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ 。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。28 图 3.5:侵蚀速率与涂层厚度的图表显示随着涂层厚度的增加,抗侵蚀性增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了随着 ~~fy ~ 的增加,侵蚀速率呈增加趋势
飞机网络内的所有设备都必须遵守国际标准(例如 DO160)或制造商习惯(例如组件的降额/应力)规定的多项要求。最严格的标准之一是电磁干扰 (EMI),即转换器不会干扰或被电网上的其他设备干扰。为了减小转换器尺寸,总体趋势是增加开关频率,但这意味着损耗增加。此外,电源安装在密闭环境中。在最极端的应用(工作温度从 -55°C 到 +110°C)中,它们无法通过强制对流冷却。在这种情况下,电源损耗会影响转换器的体积和重量,以防止其过热。因此,显著提高效率是主要目标
折旧重置成本定义为“用现代等价资产替换资产的当前成本减去因物理损耗和所有相关形式的陈旧和优化而产生的费用”。它基于对土地现有用途的市场价值的估计,加上当前更换改良的成本,减去因物理损耗和所有相关形式的陈旧和优化而产生的费用。在确定土地部分的价值时,参考了当地可用的销售证据。物业权益的折旧重置成本取决于相关业务的充分潜在盈利能力。在我们的估值中,它适用于整个综合体或开发项目,作为一个独特的权益,并且不假设综合体或开发项目的零碎交易。
MEVD – 301(A) 光电子集成电路 第一单元光波导理论:波导理论:一维平面波导、二维波导、超越方程、波导模式、模式截止条件。 第二单元光波导制造和特性:波导制造:沉积薄膜;真空沉积和溶液沉积、扩散波导、离子交换和离子注入波导、III-V 化合物半导体材料的外延生长、通过湿法和干法蚀刻技术塑造波导。波导特性:表面散射和吸收损耗、辐射和弯曲损耗、波导损耗测量、波导轮廓分析。 第三单元光耦合基础:横向耦合器。棱镜耦合器。光栅耦合器。光纤到波导耦合器。光波导之间的耦合。定向耦合器。定向耦合器的应用。单元 IV 导波调制器和开关:光调制器中使用的物理效应:电光效应、声光效应和磁光效应。波导调制器和开关。单元 V 半导体激光器和探测器:激光二极管。分布式反馈激光器。集成光学探测器。单元 VI 集成光学的最新进展:导波设备和应用的最新技术,例如光子开关、可调谐激光二极管、光学集成电路。文本/参考文献 1. T Tamir,《导波光电子学》,Springer-Verlag,1990 年 2. R Sysm 和 J Cozens,《光导波和设备》,McGraw-Hill,1993 年
- 12 V低压侧的备用电源可确保微控制器的可用性 - 如果微控制器故障发生电力损耗 - 安全发动机可以在高方面和低侧活动短路(ASC)