摘要 规划大型地源热泵 (GSHP) 系统的运行需要精确的地下管换热器 (BHE) 模型,这些模型不需要大量计算。在本文中,我们提出使用测量数据进行参数估计作为改进 BHE 分析模型的一种方法。该方法已应用于运行超过 3 年的 GSHP 系统。BHE 的建模负载和测量负载之间的偏差从 22% 降低到 14%。通过改变校准数据的时间分辨率和季节来测试校准数据集的影响。我们得出结论,时间分辨率必须足够高才能区分不同参数的影响,并且必须对注入和提取(季节)使用不同的模型参数。该方法还应用于已监测 10 年的 GSHP,结果表明,通过每年更新参数可以提高模型的准确性。
摘要。本文使用 Matlab-Simulink 评估了可逆双源热泵 (DSHP) 系统的性能,该系统能够交替利用来自空气和地面的可再生能源。实际利用的能源取决于基于当前外部气温的简单控制策略。通过将 DSHP 与位于博洛尼亚的独立住宅建筑(该建筑的供暖和制冷负荷严重不平衡)以及与埋管换热器 (BHE) 场耦合,进行了年度动态模拟。分析了不同的案例研究,其中修改了埋管场的长度。所得结果表明,可以确定最佳切换温度,以使固定的 BHE 场长度的年度性能因子 (APF) 最大化。此外,已证明地下埋管热泵 (DSHP) 非常有助于缩短地下埋管换热器的总长度,从而降低相关成本,并解决与地温漂移相关的问题(这些问题可能由地下埋管尺寸过小和/或建筑负荷不平衡引起)。因此,在传统的地下埋管热泵系统改造中,如果地下埋管换热器尺寸过小,建议使用 DSHP。
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率
• 为密苏里科技大学设计、制造和调试便携式热交换器测试台。• 650°C、25 MPa、5 gm/s • 重新配置实验室系统,以在 8 MPa 下以 800°C 运行,在 20 MPa 下以 300°C 运行,0.25 kg/s 用于 50 kW 换热器测试 • 设计/制造热交换器接口组件
目的:提高太阳能热发电系统的效率和稳定性,促进太阳能热发电并网优化发展。方法:分析储热系统中换热器的工作原理,结合系统工艺要求,采用机理建模法建立换热器的数学模型。根据储热系统的固有特性和控制要求,提出控制方案,设计采用单回路控制、Smith预估补偿控制、串级-Smith控制、前馈-串级-Smith控制等不同控制算法的控制策略。建立仿真模型,得到不同控制系统的阶跃响应波形,全面分析比较不同控制策略的优缺点。结果:引入过热蒸汽质量流量扰动后,单回路控制系统误差增大,调整系统恢复振荡状态后,系统误差较大(10.24%)。 Smith预估补偿控制系统存在波动,峰值时间为548秒,峰值温度为366℃。级联Smith控制系统存在波动,峰值时间为620秒,峰值温度为398℃,最大偏差为31℃。前馈-级联Smith控制系统存在扰动,峰值时间为606秒,最小温度为347℃,最大偏差为4℃。与级联Smith控制系统相比,前馈-级联Smith控制系统的扰动偏差减小了87%。结论:提出的前馈-级联Smith控制系统具有抗干扰能力强、稳定性好、稳态误差小等优点,对聚光太阳能发电技术的发展具有一定的意义。关键词:太阳能,发电,并网,仿真。控制
传统的空气冷却方法达到了关键限制。组件功率的增加,尤其是在CPU和GPU上,导致了更高的能源和基础设施成本,非常响亮的系统以及碳足迹的增强。为了应对这些挑战并迅速散发热量,SR675 V3采用了Lenovo Neptune液体对空气(L2A)混合冷却技术。NVIDIA HGX H200 GPU的热量通过独特的闭环液体对空气热交换器去除,该热换热器可在不增加管道的情况下提供液体冷却的好处,例如较高的密度,较低的功耗,安静的操作和更高的性能。
» 使用 ATMOSPHERE perfect 可节省高达 20 % 的氢气和电力。这个新开发的软件模块可根据电机电流调节热处理过程中的工艺气氛吹扫流量。这种优化可降低气氛(氢气)和电力消耗。» 通过燃烧空气预热,CO 2 排放量最多可减少 10 %。燃烧空气由换热器预热,最高可达到 430 °C。燃烧空气温度升高可提高燃烧效率,从而减少 CO 2 排放量。» 通过热能回收可节省高达 50 % 的能源。废气的热能用于加热循环水,而循环水又可用于加热车间、设施组件或供水。» 通过工艺气氛回收,可节省高达 70% 的氢气。受污染的氢气从设施中抽出并送入氢气再生系统,该系统包含过滤装置、吸附器、催化转化器和分析仪。氢气被净化后再返回加工中重新使用。
压缩CO 2 储能技术是平抑可再生能源产量波动的可行解决方案,具有巨大的发展前景。目前面临的主要挑战是如何实现低压CO 2 的高密度储存。为了摆脱低压CO 2 液化储存和大规模洞穴储存带来的工程应用限制,本文提出了一种新型吸附跨临界压缩CO 2 储能系统。采用Fe-MOR(0.25)作为吸附剂,在298 K和0.1 MPa下CO 2 的储存密度可达390.94 kg/m 3 。基于热力学第一定律和第二定律进行热力学模拟。结果表明,设计条件下系统往返效率、火用效率和储能密度分别为66.68 %、67.79 %和12.11 kWh/m 3 。敏感性分析结果表明:高压罐储压和储温对系统具有复合效应,是影响系统性能的关键参数;临界点泄压会引起系统性能突变;换热器效率、压缩机和涡轮等熵效率的提高对系统性能有正向影响。
处理当前全球能源危机影响的最有效方法之一是减少能源消耗并依靠能源管理策略。因此,废热/能量回收可能是降低能源成本和环境效应的有用选择。它需要找到一种实用方法来应用任何工程系统的浪费热量,在该热量中,全球热量的百分比过高。在这种情况下,废水是浪费能量的丰富来源,如果回收,可以大大减少全球使用的电量。在此框架内,本研究论文在性能,设计,工具和应用方面对废水回收系统(WWHRS)进行了彻底的分析。此外,它强调了与WWHR相关的关键要素,包括用于废水恢复的文献中使用的废水来源和方法。此外,本文证明了从排水废水对经济上的热量回收的影响,并讨论了使用WWHR的技术障碍。将证明,从废水中恢复热量的可行性可能会大大降低住宅或工业应用的能源消耗成本。此外,用于热恢复系统的主要工具是使用各种类型的热交换器,并且热换热器的选择强烈影响。最后,所有讨论和介绍的研究都表明,WWHR有很大的好处,可以考虑新的住宅建筑。©2023作者。此外,根据文献综述,研究表明,研究热恢复系统的热性能的方法是实验性和/或数值的,在某些情况下,该研究是通过分析进行的。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。