测量操作制造商。范围 电阻 温度 列表编号 订货代码 PT100 系列 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.161.6W.B.010 126-6922 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.161.6W.A.010 126-6923 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.161.6W.Y.010 126-6924 最高可达 150 ° C ° C 100 Ω -50°C 至 +150°C P0K1.161.1E.B.200 177-8047 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.232.6W.B.010 126-6926 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.232.6W.A.010 126-6927 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.232.6W.Y.010 126-6928 最高可达 200 °C ° C 100 Ω -50°C 至 +200°C P0K1.232.2I.B.1000-3 177-8048 最高可达 600 °C ° C 100 Ω -200°C 至 +600°C P0K1.281.6W.B.007 177-8045 最高可达 200 °C ° C 100 Ω -50°C 至 +200°C P0K1.281.2K.B.150.R.S 177-8046 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.520.6W.B.010 126-6929 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.520.6W.A.010 126-6930 最高可达 600 ° C 100 Ω -200 至 600°C P0K1.520.6W.Y.010 126-6931 最高可达 200 ° C 100 Ω -200 至 200°C P0K1.1206.2P.B 126-6932 最高可达 200 ° C 100 Ω -200 至 200°C P0K1.1206.2P.A 126-6933 最高可达 200 ° C 100 Ω -200 至 200°C P0K1.0805.2P.B 126-6934 最高可达 200 ° C 100 Ω -200 至 200°C P0K1.0805.2P.A 126-6935 PT1000 系列 最高可达 600 ° C 1000 Ω -200 至 600°C P1K0.161.6W.B.010 126-6936 最高可达 600 ° C 1000 Ω -200 至 600°C P1K0.161.6W.A.010 126-6938 最高可达 600 ° C 1000 Ω -200 至 600°C P1K0.161.6W.Y.010 126-6939 最高可达 600 ° C 1000 Ω -200 至 600°C P1K0.232.6W.B.010 126-6940 最高可达 600 ° C 1000 Ω -200 至 600°C P1K0.232.6W.A.010 126-6941 最高可达 600 ° C 1000 Ω -200 至 600°C
许多先进的反应堆概念要求材料在长期使用期间能够抵抗恶劣环境中的各种应力。因此,在某个时候,材料降解(例如蠕变、疲劳、脆化)将开始,如果不加以控制,其发展最终可能导致失效。虽然降解过程根据材料、负载和条件的不同而不同,但它们总是从微观结构水平开始,然后发展到宏观尺度,最终断裂。由于停机检查成本极高,因此最好实施在线状态监测,以保持工厂运行,直到需要维护。超声导波与损伤的相互作用使其非常适合状态监测,如下所述。本文研究的在线状态监测系统的要求是 (i) 耐高温和 (ii) 检测早期损伤的能力。
观察表明,浅水海底地形通常具有由各种海洋学和地质过程产生的带限方向谱。这种定向底部特征对三维低频声传播有明显的影响。使用理想化的直海底波纹模型进行的分析研究表明,声能可以在相邻波纹之间部分传导,这种传导将影响浅水中的声传播。在我们的工作中,我们还研究了理想化的弯曲海底波纹引起的传导和折射。先前的研究表明,非线性内波也可以产生声波管道。使用我们的理想模型对这两种不同的管道进行了比较分析。研究了内部波和水深测量对内部波前和底部波纹的各种相对方向的综合影响。对三维声音在真实水深测量和内部波波动中的传播进行了数值模拟。总之,在研究浅水中的三维声传播时,需要考虑水柱波动和水深测量变化。
摘要:声学显微镜和声镊在微粒操控、生物医学研究和无损检测等领域有着重要的应用价值。超高频超声换能器是声学显微镜的关键部件,而声镊和声透镜又是超高频超声换能器的重要组成部分,因此声透镜的制备至关重要。硅具有声速高、声衰减小、可加工性好等特点,是制备声透镜的合适材料。前期研究中硅透镜主要采用刻蚀法制备,但刻蚀存在一些缺点,大尺寸刻蚀工艺复杂、耗时长、成本高,且垂直刻蚀优于球面刻蚀。因此,本文介绍了一种新的超精密加工方法来制备硅透镜。本文制备了口径为892 μm、深度为252 μm的硅透镜,并基于硅透镜成功制备了中心频率为157 MHz、−6-dB带宽为52%的超高频超声换能器。换能器焦距为736μm,F数约为0.82,换能器横向分辨率为11μm,可以清晰分辨硅片上13μm的狭缝。
摘要:结构健康监测 (SHM) 正被航空航天业广泛采用,作为一种提高飞机结构安全性和可靠性并降低运营成本的方法。飞机结构上的内置传感器网络可以提供有关结构状况、损坏状态和/或服务环境的重要信息。在用于 SHM 的各种类型的换能器中,压电材料被广泛使用,因为它们可以利用压电效应用作执行器或传感器,反之亦然。本文简要概述了过去二十年来为飞机应用开发的基于压电换能器的 SHM 系统技术。然后介绍了结构健康监测系统在飞机应用中的实际实施和使用要求。讨论了解决一些实际问题的最新技术,例如传感器网络集成、大型结构的可扩展性、环境条件的可靠性和影响、稳健的损伤检测和量化。还讨论了 SHM 技术的发展趋势。
表 3-3 镍蛇形弹簧的设计常数 ...................................................................................... 35 表 3-4 与设备相关的设计常数 ...................................................................................... 40 表 3-5 继电器建模中使用的参数 ...................................................................................... 45 表 3-6 继电器建模中使用的参数 ...................................................................................... 53 表 3-7 加速度计建模中使用的参数 ............................................................................. 63 表 3-8 系统响应摘要 ............................................................................................. 63 表 4-1 主触点材料的电导率和电子平均自由程 ............................................................. 70 表 5-1 在不同电流密度下电镀镍的时间 ............................................................................. 87 表 5-2 镍电镀溶液的典型成分和操作条件 ............................................................................. 90 表 6-1 制造工艺特性摘要 ............................................................................................. 104 表 7-1 制造的微型继电器的特性 ............................................................................................. 120 表 A-1 推荐的软烘烤工艺 [MicroChem Inc.]............................................................. 144 表 A-2 曝光剂量与厚度的关系 [CAMD].............................................................................. 145 表 A-3 推荐的 PEB 工艺 [McroChem Inc.].............................................................. 146 表 A-4 氨基磺酸镍溶液............................................................................................... 147 表 A-5 镍盐的镍含量.................................................................................................... 151 表 A-6 厚度与曝光剂量的关系.................................................................................... 154
探头。通过这种方式,可以评估被检查组织的结构和形态及其功能。现代商用超声探头的主要元件是压电陶瓷换能器,它本质上是刚性的,僵硬的,并且与人体组织的机械和声学阻抗不匹配。[3] 因此,商用探头不弯曲,不符合人体解剖结构,并且需要使用超声凝胶,而凝胶会随着时间推移而变干,从而限制了长期测量。凝胶会在皮肤上留下油腻的残留物,导致皮肤干燥、患者不适甚至过敏反应。[4] 此外,商用探头采用额外的匹配层和背衬层,导致复杂性和笨重性增加。另一方面,商用设置中使用的后端采集硬件也存在许多限制。现有的研究系统笨重且难以操作,而移动手持系统重量轻但在高帧率数据处理方面受到限制。[5] 因此,超声的可穿戴性是一个两端开放的问题,一直是近期研究的热点。
摘要:作为一种有效的结构健康监测(SHM)技术,基于压电换能器(PZT)和导波的监测方法在空间领域引起了越来越多的关注。面对空间结构的大规模监测需求,需要大量的PZT,而这可能导致连接电缆额外重量、放置效率和性能一致性方面的问题。PZT层是针对这些问题的一种有前途的解决方案。但目前的PZT层仍然面临着大规模轻量化监测和缺乏极端空间服役条件下可靠性评估的挑战。针对这些挑战,本文提出了一种大规模PZT网络层(LPNL)设计方法,采用大规模轻量化PZT网络设计方法和基于网络分裂重组的集成策略。所开发的LPNL具有尺寸大、重量轻、超薄、灵活、形状定制和高可靠性的优势。为验证所研制的LPNL在航天服役环境下的可靠性,开展了一系列极端环境试验,包括极端温度条件、不同飞行阶段的振动、着陆撞击、飞行过载等,结果表明所研制的LPNL能够承受这些恶劣的环境条件,具有较高的可靠性和功能性。