项目详细信息:该项目将使用光学非线性显微镜中的高级方法来探讨生物组织如何随着时间的推移对机械负荷做出反应。再生医学的跨学科领域坐落在现代医疗保健的先锋队。这种不断增长的全球研究工作旨在开发修复,更换或再生受损细胞和组织的方法。这个领域利用了人体的自然治愈能力,同时整合了生物学,工程和物理学的新兴进步。下背部疼痛是多年来全球残障人士多年的主要原因。这种情况通常与椎间盘的变性有关。在过去的二十年中,对修复椎间盘损坏的再生医学方法的基本研究已经看到了巨大的增长。然而,迄今为止,很少有再生疗法已经发展为人类试验,而且没有人表现出成功。在该领域的进步一个主要障碍是对天然椎间盘组织的机械生物学的有限理解,并且缺乏用于新再生疗法的成本和时间有效筛选方法。更具体地,当前的再生测试方法经常对正在测试的样本具有破坏性。这禁止至关重要的纵向研究,该研究跟踪单个样本如何随着时间的流逝而对不同的机械和生化提示响应。该项目将通过在非线性光学显微镜中应用新方法和现有方法直接针对该障碍,以连续监测椎间盘样品中的显微镜变化。在这个项目中,我们利用了生物样品非线性显微镜和椎间盘机械生物学的内部内部专业知识。该项目将使用埃克塞特大学生物物理学组的研究级非线性显微镜组合来纵向研究椎间盘及其对复杂3D机械载荷模式的响应。非线性显微镜涉及使用超快速脉冲激光系统在要成像的样品中激发非线性光学响应。当两个或多个光子以相同的位置和时间到达样品时,它们可以将能量结合起来,以激发诸如刺激的拉曼散射和谐波产生之类的异国情调过程。通过检测这些过程发出的光子,揭示了对样品的微观结构和生物化学的强大见解。随着时间的推移,持续监测组织和构造的前所未有的能力将洞悉许多基本问题,例如物理环境(例如流体压力)影响天然和合成构建体。这些见解将使我们对疾病和变性的开始和进展以及在植入前如何最佳地“启动”再生疗法的理解。此外,非破坏性监测将显着加速再生疗法的优化,从而导致成本降低和增加吞吐量。这项研究将对从事再生医学的公司产生极大的兴趣,我们将利用现有的行业联系来促进我们的发现并鼓励参与。项目时间表1-6:归纳和
数十年来,光学近场显微镜促进了对纳米级光子激发的开创性研究。近年来,Terahertz场的近场显微镜已成为涉及语音和电子现象,丰富时空动力学和高度非线性过程的实验的重要工具。建立在这个基础上,这种观点阐明了Terahertz近场显微镜提供的变革机会,以探测超快相变的探测,有助于应对以前无法访问的凝聚态物理学的挑战。激光驱动的相位转变在许多系统中都伴随着具有时空特征的Terahertz脉冲,该脉冲受相变的复杂物理学控制的。使用Terahertz近场微副本技术对这些发射的脉冲的表征可以支持对超快相变动力学的研究。这种方法可以例如,允许量子材料中超快拓扑转换的观察者,展示其阐明相位变化的动态过程的能力。
报告的范围包括地面、地下和空中行星机器人,同时将一些相关领域推迟到其他专门的努力和报告。研究结果列出了一系列高优先级机器人技术,如果通过有针对性的投资使其成熟,则可以实现行星科学十年调查中强调的高优先级任务,或有可能在本十年及以后取得突破性进展。十年调查没有针对比新前沿更小的任务提出具体建议,但它确实概述了这些任务可以解决的引人注目的科学问题。因此,包括可能影响发现号、小型创新行星探索任务 (SIMPLEx) 级及更小任务的技术。十年调查还建议将科学有效载荷送往月球,例如通过 PRISM(月球表面有效载荷和研究调查)和 CLPS(商业月球有效载荷服务)计划。在这一范围内,研究小组确定了 NASA 应该投资机器人技术开发和融合的首要领域。