摘要 集群计算在数据分析、科学模拟和人工智能等各个领域发挥着关键作用。通过利用多台互连计算机的功能,集群能够高效地处理大规模计算任务。然而,传统的集群计算方法具有固有的局限性,可能会阻碍其性能和可扩展性。近年来,量子计算已成为一种有前途的范式,有可能彻底改变计算能力。量子计算机利用量子力学原理比传统计算机更快地执行复杂计算。专为量子计算机设计的量子算法在解决传统系统计算挑战性问题方面表现出了卓越的能力。本研究重点关注量子算法在提高集群效率方面的应用。通过利用量子计算的独特属性(例如叠加和纠缠),量子算法提供了提高集群计算系统性能和可扩展性的可能性。本研究的目的是深入探讨在集群计算环境中使用量子算法的潜在优势、挑战和未来前景。通过研究现有的为提高集群效率而设计的量子算法并分析现实世界的案例研究,我们旨在深入了解这一新兴领域的实际意义。通过这一探索,我们力求阐明将量子算法集成到集群计算中的机会和局限性,并确定进一步研究和开发的潜在途径。通过利用
序号 主题 页码 1. 简介 - 印度机遇 4 2. 泰米尔纳德邦 - 特色专题 8 3. “为何选择印度,今天?” 18 4.“令人兴奋的印度” 19 5. PRL 20 - 21 6. 全球太空领袖 22 - 23 7. 印度 - 新兴电子中心 24 8. 工业陶瓷 25 9. 印度航空航天和研发部门的私有化 26 - 27 10. 空间技术博览会 28 - 29 11. 印度重型工程 30 - 31 12. 印度商业航空 33 13. 空间供应链管理 34 14. 以色列航空航天 35 15. 空间技术与探索的未来 36 - 37 16. STEM 实验与太空探索 - 研讨会 38 - 39 17. 训练有素且才华横溢的工程师 40 - 41 18. 在美国投资 43 19. 美国签证 44 20.“从海洋到星星” 47 21.印度商业城市 48 & 49 22. A & D 公司简介 50 - 51 23. 印度中小微型企业和全球原始设备制造商 53 24. 致谢 55
摘要人工智能中的快速和前所未有的增长,特别是在生成人工智能(Genai)中,对我们日常生活的各个方面产生了深远的影响,包括我们执行任务和在工作场所中分享知识的方式。尽管对这些AI工具提供的生产率提高了生产率以及围绕其使用的道德问题的实质性研究,但生成AI对员工知识转移的特定影响仍然没有得到充实的影响。知识转移是组织成功的关键方面,涵盖了专业知识和信息的共享。这项研究通过研究如何增加对生成AI工具的依赖来重塑传统知识交流方式,从而解决了文献中的差距。通过对经常在工作中使用生成AI的员工进行半结构化访谈,本研究旨在更深入地了解知识转移过程的变化。关注的关键领域包括AI工具如何增强或替换人类到人类知识共享,过度依赖AI生成的信息的潜力以及对组织学习和协作的影响。这项研究使用了一种定性方法,并找到了两组机制,通过这些方法依赖Genai会影响知识传递:支持机制和限制机制。支持机制包括提高生产率和便利性,从而通过移动知识来源和促进外部化来增强知识转移。这项研究有助于理解Genai在知识转移过程中的双重作用。另一方面,限制机制突出了Genai在同事互动方面的便利驱动的降低的协作和社会化。调查结果表明,尽管Genai可以使知识转移受益,但过度依赖可能会阻碍批判性思维,创造力和共享知识的质量。关键字:生成AI,知识转移,过度依赖,协作,社会化,知识转移过程。
蔗糖发酵是一个过程,涉及通过某些类型的微生物(例如酵母菌和细菌)将蔗糖转化为乙醇和二氧化碳的过程。此过程具有多种应用,从酒精饮料的生产到生物燃料和其他化学物质的工业生产。在本文中,我们将探讨蔗糖发酵背后的科学,包括所涉及的微生物,生化途径以及该过程的应用。蔗糖发酵通常由酵母和细菌等微生物进行。在蔗糖发酵中使用的最常见的酵母中是酿酒酵母和Zygosacchachomyces rouxii,而诸如Zymomonas mobilis和actobotobacter xylinum之类的细菌也能够执行此过程。酿酒酵母,也称为酿酒酵母,是一种单细胞的真菌,通常用于啤酒,葡萄酒和面包的生产中。它可以通过将蔗糖分解为葡萄糖和果糖来发酵,然后将其转化为乙醇和二氧化碳。在存在氧气的情况下,酿酒酵母也可以将乙醇转化为乙醛,该醛将进一步氧化为乙酸。Zygosaccharomyces rouxii是能够发酵的酵母。与酿酒酵母不同,它可以直接发酵蔗糖而不先将其分解成葡萄糖和果糖。Z. rouxii通常用于生产甜葡萄酒和强化葡萄酒,以及生产某些发酵食品(例如酱油和味oo)。它能够发酵Zymomonas mobilis是一种细菌,以其以非常高的速度发酵糖的能力而闻名。
Solvay是一家科学公司,其技术为日常生活的许多方面带来了好处。在64个国家 /地区拥有超过23,000名员工,债务人,想法和要素可以重塑进步。该小组试图为所有人创造可持续的共享价值,特别是通过其Solvay One Planet路线图围绕三个支柱制作:保护气候,保护资源并促进更好的生活。该集团的创新解决方案有助于在房屋,食品和消费品,飞机,汽车,电池,智能设备,医疗保健应用,水和空气净化系统中发现的更安全,清洁剂和更可持续的产品。成立于1863年,今天的Solvay在其绝大多数活动中排名全球前三家公司,并在2020年提供了90亿欧元的净销售额。solvay在布鲁塞尔和巴黎(Solb)上列出。在www.solvay.com上了解更多信息。
I.近年来,生物识别技术在日常生活中越来越多地使用。例如,在使用图形和面对图像登录智能手机中。但是,这种生物特征数据始终涉及身体表面。因此,可以使用数字设备(例如摄像机)轻松地被盗(捕获)。If the data are stolen, copies can be made.此外,填充和脸部识别假定仅一次性身份验证,这会导致SPOOFG的风险。使用其生物识别技术对系统的常规用户进行身份验证,即使用户被没有使用该系统许可的冒名顶替者替换,也无法根据一次性的身份验证使用生物识别方法检测SPOOFEF。为了解决这个问题,已经提出了连续的身份验证,因为它比一次性的身份验证更有效。作为适合连续身份验证的生物识别技术,脑波或脑电图(EEG)引起了人们的注意[1]。只要人还活着,信号总是会产生,因此可以连续测量此信息。此外,由于任何人都可以利用脑波,它们是最容易获得的生物识别数据。由于仅在人戴上脑波传感器时才能检测到脑波,因此其他人也无法秘密地窃取数据。但是,传统研究并未提及使用脑电波作为生物识别技术的应用。使用脑波需要用户佩戴脑波传感器,但是这需要时间,因为用户在移动头发的同时将许多电极设置在头皮上。例如,当用户输入房间,登录PC或使用ATM时,这是无法想象的。因此,作为生物识别技术的脑波不适用于一次性身份验证。另一方面,一旦用户佩戴
混凝土的硅酸盐水合物晶体 (2023) 《空气与废物管理协会杂志》,73 (1),第 40-49 页。Pap,J.,等人,使用机器学习对组织绩效进行建模
Phil Town、Rule #1 Investing, Inc. 或其子公司,以及其各自的任何管理人员、雇员、代表、代理或独立承包人均不是持牌金融顾问、注册投资顾问或注册经纪交易商。他们既不提供投资或金融建议,也不提出投资推荐,也不从事交易业务。个人交易示例仅用于教育和演示目的。它们不代表任何账户中的任何头寸或持续回报,也不代表对未来收益的预期。演讲者和培训师可能有其他积极或消极的立场。Rule #1 Investing, Inc. 或其任何关联方提供的信息或意见均不构成购买或出售任何证券、期货、期权或其他金融工具的邀请或要约。