•符合乘员任务的NASA/ESA标准的120V平台的可扩展功率解决方案。•有效的,孤立的,双向功率转换。•可靠的电源管理。•在120V和28V处受保护的功率分布。•次要120 V和28 V公共汽车的生成。•可编程数字控制的电源转换器,并行操作以提高功率能力。•基于可替换卡的模块化方法。•设计为与复杂的接地方案兼容。•灵活的体系结构使功能子系统从几千瓦到数十千克。•纸牌投资组合实现了实施一个或几个电源轨道的电力架构的构建。•自主或车载计算机从属电源导轨调节模式。•与航空电子学的100台TTE链接。
在过去的几十年中,汽车应用对电子系统的强劲需求以及半导体技术工艺的不断发展,推动了专用集成电路 (ASIC) 的设计和制造,包括模拟、数字、电源和射频模块,这些模块在大幅降低生产成本的同时,还提高了系统性能和可靠性。基本上,满足模块级规范的设计问题已经逐渐从印刷电路板 (PCB) 转移到集成电路,因此当前的 IC 设计(尤其是定制 IC)大多是为了满足大多数模块级规范,包括那些涉及电磁兼容性的规范。实际上,电子模块传导和辐射电磁发射的最大限值不能轻易与 IC 级的电气参数相关联,例如直流电流消耗、时钟频率、IC 封装物理尺寸、I/O 电压和电流斜率等。同样,施加到电子模块以检查其对电磁干扰 (EMI) 的敏感性的射频干扰水平不能像任何其他设计规范那样对待。一般来说,IC 的电磁辐射和电磁敏感性与其所处的周围环境密切相关,即 PCB 布局、EMI 滤波器、PCB 接地方案、金属外壳的大小和形状等。然而,在过去的几十年里,一些
在设计印刷电路板 (PCB) 时,使用自动布线器很诱人。通常情况下,纯数字电路板(特别是当信号相对较慢且电路密度较低时)就可以正常工作。但是,当您尝试使用布局软件提供的自动布线工具来布局模拟、混合信号或高速电路时,可能会出现一些问题。产生严重电路性能问题的可能性非常大。例如,图 1 显示了两层电路板的自动布线顶层。该电路板的底层如图 2 所示,这些布局层的电路图如图 3a 和图 3b 所示。对于此混合信号电路的布局,设备是手动放置在电路板上的,并仔细考虑了数字和模拟设备的分离。这种布局有几个值得关注的地方,但最麻烦的问题是接地策略。如果在顶层遵循接地迹线,则每个设备都通过该层上的迹线连接。每个设备的第二个接地连接都使用底层,过孔位于电路板最右侧。在检查这种布局策略时,应该立即看到的危险信号是存在多个接地环路。此外,底部的接地返回路径被水平信号线中断。这种接地方案的优点是模拟设备(MCP3202,12 位 A/D 转换器和 MCP4125,2.5V 电压基准)位于电路板最右侧。这种放置可确保数字接地信号不会从这些模拟芯片下方通过。