下一代无线通信系统需要高可靠性、高连接密度和低延迟。这使得大规模机器类型通信 (mMTC) [1] 成为 5G 及 5G 后 (B5G) 系统的一个关键特性。在 mMTC 中,大量设备(例如,每平方公里数百万台设备)具有低传输功率和短有效载荷,它们会不时地与基站 (BS) 进行通信,无需任何协调,也就是说,在任何给定时间,只有一小部分设备处于活动状态。传统的基于授权的多址接入方法,其中 BS 为每个用户分配固定资源(时间、频率、代码等),由于调度大量用户的过度延迟和信令开销,在物联网 (IoT) 等 mMTC 应用中变得不可行。为了解决这个问题,[2] 中引入了一种新的免授权随机接入范例,称为无源随机接入 (URA)。在 URA 中,设备共享相同的码本;因此,用户身份被删除,这允许任意数量的用户。接收器旨在恢复已传输消息的列表,而不管用户身份如何,并且每个用户的错误概率 (PUPE) 被采用作为主要错误度量。
凯文·丹尼希 美国宇航局的搜救技术曾在地球上拯救了数千人的生命,在未来的月球和火星任务中,这些技术将得到增强,以确保宇航员安全返回。 美国宇航局的搜救 (SAR) 办公室正在开发系统并整合 GNSS,以支持阿尔忒弥斯月球任务。 登月、着陆和返回需要始终具备搜救能力。美国宇航局搜救办公室国家事务任务经理 Cody Kelly 在 1 月份的 ION 国际技术会议上表示,由于距离和不确定性,这意味着必须结合使用 GNSS 和其他地理定位技术,才能在极具挑战性的环境中寻找和营救宇航员。 “在[国际]空间站,你乘坐火箭回家的时间不超过 90 分钟。然而,月球离这里有三天时间,”他说。“通过任何通讯方式,火星离你有 21 分钟的路程,因此,地球上的任务控制中心能够在整个任务期间找到你变得尤为重要。”凯利负责所有载人航天搜救行动,并支持 SpaceX、波音和 Artemis/Orion 任务,他已经提供了专门的搜索和救援数据,用于在低地球轨道 (LEO) 着陆后定位载人航天舱和宇航员。凯利说,当宇航员开始在月球上行动时,由于地形崎岖,搜索和救援将极其困难。“在第一次阿波罗登月期间,宇航员并没有在相对平缓的倾斜地形上远离着陆器。然而,新兴技术计划将采用类似温尼贝戈的探测车,它将穿越着陆区以外的广阔区域,包括月球南极的广阔区域,”他说。
这些保证仅在以下情况下适用:(i) 产品和软件已根据 Trimble 的相关操作手册和规范正确安装、配置、连接、存储、维护和操作;(ii) 产品和软件未被修改或误用。上述保证不适用于以下情况,且 Trimble 不对以下情况负责:(i) 将产品或软件与非 Trimble 制造、供应或指定的产品、信息、系统或设备组合或使用而产生的缺陷或性能问题;(ii) 产品或软件的操作遵循 Trimble 产品标准规范以外的任何规范;(iii) 未经授权修改或使用产品或软件;(iv) 因雷击、其他电气放电、淡水或盐水浸泡或喷溅造成的损坏;或 (v) 易耗件(例如电池)的正常磨损。
3.23 d 2 基线相对于 d 1 基线的模糊相位延迟图。66 3.24 图 3.23 的查找表表示。查找表中的每个条目代表给定模糊相位延迟测量组合 ˜ ψ 1 和 ˜ ψ 2 时 ρ 2 的相应模糊度数。请注意,行地址向上计数,列地址向右计数。........。。。。。。。。。。。。。。。。。。。。。68
ENTR V4 通过直接数字射频 (RF) 处理接收 IBS UHF 卫星通信信号。小尺寸可同时接收和处理多达四个 IBS 替代路径信道和通用交互式广播 (CIB),而无需多个昂贵、敏感的 RF 组件。可以动态重新配置信道方案,而不会干扰操作。
一般操作如下所述: • 每次检测到并测量 RF 脉冲时,DR068 都会在 FPDP 上传输脉冲描述符字。• FPDP 通信是单向的,但是,接收器能够通过断言 SUSPEND 信号来暂停 PDW 的传输。• FPDP 数据字是 32 位宽的“帧”,DR068 PDW 长度为 96 位,因此每个 PDW 传输 3 个 32 位帧 • FDPD 时钟速率为 40MHz。• PDW 传输需要 5 个时钟周期,因此在 40MHz 时,TX PDW 需要 125ns。
FLEX - FLORIS 仪器控制单元 INSIGHT – 地震仪电子盒 SENTINEL 1 / SES – 仪器控制模块 AEOLUS – Aladin 控制和数据管理单元 GOCE - 梯度仪全套电子设备 (3xFEEU、GAIEU 和 TCEU) IASI Ng – 机械驱动电子设备 MTG / IRS – 干涉仪控制电子设备 BEPI-COLOMBO / BELA – 模拟电子单元
[13]。Rabin原型OT的安全性是基于分解问题的。这些是相对强大的计算假设。然而,众所周知,遗忘转移可能不能基于较弱的假设:证明忽略的转移是安全的,假设仅在黑盒减少中的单向函数与证明p = np [24]一样困难。遗忘的转移与关键协议一起在一系列任务中落下,这些任务只知道如何使用至少使用陷阱门单向功能实施。但是,如果爱丽丝和鲍勃可以访问量子通道,则可以将遗忘的转移降低为较弱的原始词,称为位承诺[4,12],因此仅在量子计算机模型中仅保存一个单向函数。遗忘的转移也可以基于嘈杂的通道[15,14]。在本文中,我们描述了如何使用接收器鲍勃的内存大小来实现遗忘的传输。我们假设有大量随机数据的初始广播,在此期间,BOB可以免费使用无限制的概率函数。只要函数的输出大小有限并且不超过BOB的内存大小(存储空间),我们就可以证明OT协议是安全的。在爱丽丝上没有任何计算或内存限制。为了执行协议,双方都需要使用一定数量的内存。Let;成为0 <<<<的常数Let;成为0 <<<<
与小型SAT兼容的系统为4千克质量,10U体积和15W以下的功率。这将通过在Terahertz频率上工作的基于Schottky的杂尼光谱仪来解决这一问题,并在室温下以较大的瞬时带宽和高光谱分辨率进行操作。在保持最先进的性能的同时,满足所有条件的两个主要关键系统参数包括:1)混合器的配置,其外在层定义,匹配的传输线和外壳,2)本地振荡器子系统部分及其校准。表I为当前的设计工作提供了上下文。最佳记录的系统[2]和[3]使用基本平衡的混合器,分别在2 THz处使用5 MW和10-12 MW的局部振荡器功率,可舒适地由二氧化碳泵送的甲醇气体激光器提供。基本混合器的选择是合理的,因为它们在理论上可以比次谐波混合器达到更好的噪声性能[4]。但是,亚谐波拓扑通过将其工作频率降低了两个,从而放松了局部振荡器(LO)源。此配置还避免了使用宽敞的二氧化碳激光器的要求,该激光器远非满足质量/音量/功率标准,并且无法通过Schottky Local振荡器源可以轻松实现光谱可调性[5] [6]。提议的接收器利用了混合器的平面Schottky二极管,并乘以LO。