迁移学习 (TL) 已广泛应用于基于运动想象 (MI) 的脑机接口 (BCI),以减少新受试者的校准工作量,并表现出良好的性能。虽然基于闭环 MI 的 BCI 系统在脑电图 (EEG) 信号采集和时间滤波之后,在向外部设备发送控制信号之前包括空间滤波、特征工程和分类模块,但之前的方法仅考虑其中一两个组件中的 TL。本文提出可以在基于 MI 的 BCI 的所有三个组件(空间滤波、特征工程和分类)中考虑 TL。此外,在空间滤波之前特别添加数据对齐组件也非常重要,以使来自不同受试者的数据更加一致,从而促进后续的 TL。在两个 MI 数据集上的离线校准实验验证了我们的建议。特别是,整合数据对齐和复杂的 TL 方法可以显著提高分类性能,从而大大减少校准工作量。
摘要 本文分析了高性能仿生手假肢设计中主要问题的解决途径,提出了设计时必须同时解决的主要任务。通过对当今常见的仿生手假肢的结构和工作原理的分析,发现其主要缺点,这些缺点要么与设计的不完善有关,要么与旨在提供触觉的信息处理以及用于形成仿生假肢元件控制信号的生物信号的选择和处理等有关。提出了仿生假肢结构开发的概念,该概念涉及将作者提出的基于内骨骼的假肢机电设计与触觉传感器以及特殊设计的 EMG 传感器和执行器相结合,它们根据物联网原理组合成一个网络,其中包括使用专门的信息支持来积累和处理这些信号,并基于人工智能和云技术元素的应用为假肢执行机构和执行器形成相应的控制信号。
任务 2:是否可以选择一组手动控制偏差(和油门设置)来稳定机身 x 轴空速分量 u =13 m s − 1 的开环直线、水平和稳定飞行?如果可以,将控制信号(标准化)设置记录为微调,记录在初始条件向量以及低级控制块(u E 、u A 、u R )和高级控制块(u T )中。这些将作为下一步控制器设计的微调偏差。蓝色的配平用户输入块采用标准化值,即 ∈ [ − 1 , 1]。不必担心获得完美的配平 - 因为我们稍后可能会对其进行改进。进一步记录稳定状态俯仰角 θ - 将此量输入高级控制块的“θ 配平”用户输入源以及“姿态模式开关”左侧的“用户姿态设定点”块。
摘要:自动轮椅是提高残疾人行动能力的重要工具。计算机和无线通信技术的进步促进了智能轮椅的提供,以满足残疾人的需求。本研究论文介绍了语音控制电动轮椅的设计和实现。该设计基于语音识别算法,对驱动轮椅所需的命令进行分类。自适应神经模糊控制器已用于生成启动轮椅电机所需的实时控制信号。该控制器依赖于从避障传感器和语音识别分类器接收到的真实数据。轮椅被视为无线传感器网络中的节点,以便跟踪轮椅的位置并进行监督控制。模拟和运行实验表明,通过结合软计算和机电一体化的概念,实现的轮椅变得更加复杂,并为人们提供了更大的移动性。
摘要 — 在本研究中,我们提出了一种用于无线脉冲宽度调制 (PWM) 控制电源转换器的新方法,该方法适用于复杂配电系统中的众多电源转换器。此方法无需在分布式转换器模块之间建立多个门控/PWM 信号的物理连接。通过使用基于超宽带的通信,PWM 控制信号可以同时无缝地从中央控制器无线传输到多个转换器。系统稳定性经过彻底分析,实验结果验证了无线控制方案对于以 50 kHz 开关频率工作的降压转换器的有效性。从此设置获得的最小延迟为 5.38 μs。这种控制概念使高压电力系统中的分布式控制更容易实现,尤其是在多级架构中,即使在环境噪声恶劣的条件下也是如此。
•转向镜和检测器之间的光距离:对于较大距离的精度较高。因此,应选择较大的距离。第一个转向镜应靠近波动源。•光束直径:具有相同的激光束位置的绝对变化,较小的直径会导致4 QD象限的功率差异更强,因此会导致更陡峭的控制信号。这就是为什么直径较小的激光束可以以较高的精度定位。•强度:检测器的分辨率进一步取决于击中敏感区域的强度。这可以通过适当的光学过滤器选择和电子方式进行优化(另请参见第5.5节)来改变。•重复率和脉冲持续时间:可以针对不同的激光参数优化控制器带宽。较高的带宽导致更快的反应,因此在快速波动的情况下,精度更高。
每当V dd小于VWI时,MRAM受到写作的保护。v dd超过v dd(min)后,启动时间为2 ms,然后才能启动读取操作。这次允许内存电源稳定。/e和 /w控制信号应在电源上跟踪V dd至V dd -0.2 V或V IH(以较低者为准),并且在启动时间保持较高。在大多数系统中,这意味着应用电阻将这些信号拉起,以便如果驱动信号为HI-Z,则在电源上升高时,信号保持较高。任何驱动 /e和 /w的逻辑都应将信号保持高的信号与启动时间更长的启动时间更长。在功率损耗或BrownOut期间,V DD在VWI以下,写入受到保护,并且当功率返回V DD(min)时,必须观察到启动时间。
摘要 - 技术发展不断增加,这可以通过日常需求中使用的电子设备数量的增加来看出,其中之一是转化电能的科学,即5级逆变器。5阶段逆变器是可以将直流电转换为AC电力的电压更换器。为了通过谐波消除技术获得正弦的5级逆变器电压波输出,进行了许多研究。谐波消除技术是一种5级逆变器信号处理技术,可用于最大开关模式,以获得正弦输出波形和最小THD值,并结合STM32F407微控制器控制信号发电机电路和MOSFET驱动器电路,预计这是5级Inverter Wave Formform的高级输出波动。正弦。测试是以PSIM软件和实际实现形式进行的软件进行的。基于结果,所使用的方法能够产生逆变器输出电流和电压为4.38%。
大多数现代机器,包括风扇和空调,都是由交流电供电的。必须有一种可靠的方法将直流电转换为交流电,而不会留下任何交流电。为逆变器供电的电子电路完成了这一改进。将直流输入电压转换为具有理想幅度和频率的修改后的交流输出电压是电源逆变器的主要任务。PWM 方法(称为正弦 PWM)被广泛使用。在高频三端传输波逐渐决定逆变器中每个轴的切换状态之前,在此 PWM 方法中比较正弦交流电压参考。逆变器经常用于现代应用,例如变速交流发动机、入伍加热、备用电源和不间断电源。可以一般分类的两种主要逆变器类型是单级和三级逆变器。每种类型都可以使用具有受控开/关操作的设备。为了提供交流输出信号,这些逆变器通常使用节拍宽度平衡控制信号。
20 世纪 80 年代末,CCITT 第 7 号公共信道信令协议 (SS7) 的出现彻底改变了信息交换的控制。早期的策略要求将信息路由信息通过与语音或数据相同的信道发送,这导致所谓的“蓝盒子”可以模拟交换控制信号,从而欺骗性地利用网络。通过将所有信息路由指令移到单独的专用信道上,系统操作员可以集中控制其网络的运营。由此产生了强大的监控和测量各种信令系统参数的能力。37900A 信令测试仪(约 1989 年)有助于安装和维护这些信令系统。它直接导致了 acceSS7 网络监控系统(在 Superstars 下描述)和当前的信令顾问测试仪的出现,它们可以非侵入式地监控 SS7 网络,显示信令数据、负载水平和错误率的实时分析,并提供消息类型等的统计报告。