1. 前言 3 2. 介绍 4 2.1 概述 4 2.2 系统效益和成本分析 6 3. 应用和功能 7 3.1 实时显示 7 3.2 报警状态 8 3.3 管理信息、维护、故障记录 8 3.4 简单且经济的 CCMS 集成 9 3.5 DDC 控制器的远程编程 9 4. 硬件和软件 10 4.1 硬件 10 4.2 软件 13 5. 趋势和发展 14 5.1 开放协议和互操作性 14 5.2 基于 Web 的界面 14 5.3 系统集成 15 5.4 控制技术 15 5.5 传感器技术 15 6. 能源管理策略 16 6.1 操作和维护计划 16 6.2 照明安装 17 6.3 电气安装 17 6.4 升降机和自动扶梯安装 18 6.5空调系统 19 7. 系统间相互作用 27 7.1 空调系统 28 7.2 照明系统 28 7.3 电气系统 29 7.4 电梯系统 30 7.5 一体化设计 30
I.1 飞行控制:作用和要求 ................................................. . ................................................. .................6 I.1.1 作用、发展和基本定义 ................................................ .................................................. ...................6 I.1.1.1 飞行控制系统的作用 ...................................... …………………………………… ................................................6 I.1.1.2 进展情况:来自各方机械到电传飞行以及未来趋势................................................ ....................................6 I.1.1.3基本定义................................................................ ……………………………… ……………………………… ........7 I.1.2 CDVE 系统要满足的所有要求......................................... ......................................................8 I.1.2。 1 操作安全........................................................................ …………………………………… .................................................8 1) 基本概念................................. ……………………………… ……………………………… ................8 2) 属性................................. …………………………………… …………………………………… ......8 3) 意思 ...................................................... …………………………………… …………………………分区>
设计、生产并测试了一种 LTCC 微流体装置,该装置带有流体混合曲流、Y 型试剂接头、光学检测通道、光纤、流体输入/输出、加热器、温度传感器和专用温度控制器。连接光纤的配置允许测量光透射率和荧光强度。该装置用于液体的化学分析。微流体系统通过长光纤连接到典型的分析紫外-可见光和荧光光谱微分析系统。Golonka 等人在论文中介绍了系统中测得的光透射率和荧光。18 本文介绍了一种类似的系统,其中包含短石英光纤以及与 LTCC 模块集成的光源和检测器。介绍了微流体系统技术、石英光纤集成方法和温度控制器。为了验证透光率的测量效率,使用蠕动泵将 Ponceau IV R 溶液泵入 LTCC 微系统。使用光纤在 l 5 502 nm 处进行光学检测。采用高效 LED 作为光源,通过一根光纤将光传输到检测通道。另一根光纤连接到集成光检测器。
CVMS 专为机载环境而设计,可轻松与其他飞机系统集成。由于每个单元都由两个 115VAC 飞机电源供电,因此数据可靠性和完整性得到增强,并且即使系统部件出现故障或物理损坏也能继续运行。以太网分布式交换机与小组摄像头一起安装,有助于最大限度地减少布线,并降低由此产生的线束的重量、成本和复杂性。由于网络通信和数据共享是通过成熟的光纤网络处理的,因此连接简单、可靠,并且完全不受电磁效应 (EME) 和其他飞机系统干扰的影响。系统的扩展很简单,只需在任何光纤以太网链路中添加另一个分布式交换机及其摄像头即可。
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商构建了定制的雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 接口。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带上。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多的数据。由于数据传输到磁带的速度不能像从雷达接收数据那样快,因此只能记录一部分数据。在收集搜索数据时,仅记录操作员指定的范围和方位有限的扇区内的数据。最初,扇区大小不能比 10 ° x 15 mi 大太多,具体取决于雷达波形。在收集轨迹数据时,CDC 会在指定的时间内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 用于许多数据收集练习和测试活动。虽然用于 CAS 搜索收集的扇区大小相对较小,并且可收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,需要一个至少为 25 ° x 全范围的扇区大小。更大的收集扇区需要设计和构建新的 MOD 6 CDC。 Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用