Martin 博士是 GENYO 基因和细胞治疗小组的首席研究员。在过去的 25 年里,该公司的活动一直集中在开发新的、更有效、更安全的基因转移系统,用于治疗癌症和罕见疾病的先进疗法。他于1995年至1997年在英国癌症研究所(ICR)工作,随后于1997年至2002年在英国伦敦温德耶医学科学院(UCL)工作,专注于逆转录病毒载体的开发,用于制定癌症免疫治疗策略。 2002 年,他作为 Ramón y Cajal 员工在 IPB López Neyra (CSIC) 建立了自己的细胞和基因治疗 (CGT) 研究小组,并从 2009 年起在 GENYO 工作。他自 2019 年起担任西班牙基因和细胞治疗协会董事会秘书,自 2012 年起担任格拉纳达大学生物医学博士课程和免疫学硕士学术委员会成员。马丁博士在国际期刊上发表了 84 多篇科学文章,包括《自然生物技术》、《分子生物学杂志》、《生化科学趋势》、《EMBO 杂志》、《干细胞》、《分子治疗》、《病毒学杂志》、《免疫学杂志》、《关节炎与风湿病》、《病毒学杂志》、《白血病》、《干细胞转化医学》、《控释杂志》等。他的文章被引用超过2020次,H指数=27。他已经获得了13项与基因细胞治疗和免疫治疗相关的专利。基于其中几项专利,他在 2016 年创立了 LentiStem Biotech,这是一家衍生公司,其目标是优化用于治疗罕见疾病和癌症的基因治疗工具。近年来,他的团队一直致力于改进生产用于治疗 Wiskott-Aldrich 综合征、庞贝病和癌症的先进治疗药物 (ATMP) 所需的工具。为此,它专注于两种基因改造系统:1)慢病毒载体是目前在活跃分裂细胞中实现稳定基因改造的最有效和最安全的工具;2)基因组编辑工具(ZFN、CRISPR/Cas、TALEN)是未来高效、无风险基因治疗的技术。
摘要 药物控制释放是当前药物输送系统的一个关键组成部分,旨在提高治疗效果,同时最大限度地减少负面影响。由于其可调特性和广泛的应用,微球已成为实现药物控制释放的适应性载体。这篇综述论文深入探讨了利用微球控制药物释放的配方技术、机制和问题。本文首先讨论了药物控制释放在医疗保健中的重要性以及微球在实现这一目标方面发挥的关键作用。然后,它研究了微球的众多配方选择,包括材料选择、生产工艺和药物包合技术。还彻底研究了微球特性(例如粒度、形状和药物负载)对释放动力学的影响。详细描述了影响药物从微球释放的过程,包括扩散控制、侵蚀控制和膨胀控制释放机制以及聚合物特性和药物-聚合物相互作用的相互作用。本文研究了产生靶向药物释放的复杂方法,包括外部刺激响应微球和内部刺激响应系统。研究了位点特异性靶向策略,包括通过增加渗透性和保留 (EPR) 效应进行被动靶向和通过配体功能化微球进行主动靶向。尽管基于微球的药物输送系统前景广阔,但它仍面临许多障碍。主要挑战是爆发释放、稳定性、扩大规模、免疫原性和监管问题。在基于微球的药物输送方面,讨论了增强表征技术、纳米技术集成、联合疗法、个性化医疗和新趋势方面的最新进展。关键词:微球、药物输送、控释、配方、机制、扩散控制释放、侵蚀控制释放、肿胀控制释放、靶向释放、外部刺激响应、内部刺激响应、纳米技术集成、联合疗法、个性化医疗、挑战、先进的表征技术、扩大规模、稳定性、免疫原性、监管考虑、未来前景、创新。国际药物输送技术杂志 (2024); DOI:10.25258/ijddt.14.1.68 如何引用本文:Vishwakarma R、Tare H、Jain SK。《用微球调节药物释放:配方、机制和挑战》。《国际药物输送技术杂志》。2024;14(1):487-495。支持来源:无。利益冲突:无
迭代是科学家、工程师和临床医生所熟知的进步之路。在应对 COVID-19 及其引发的病毒时,全世界的人们都站在前排,目睹科学家、工程师和临床医生努力使用迭代科学方法来保护健康人并治疗感染者。公众亲眼目睹的是,科学和医疗保健创新进展缓慢、令人沮丧地间接,最重要的是,这种进步并不总是稳定或向前的。挫折是常见的。科学方法的力量在于,挫折,甚至失败,都不是死胡同——这些结果实际上是帮助解决当前问题的额外知识。一年前,恢复面对面教育和实验室研究遇到了许多挫折,最终我们的母校不得不退后一步,重新开始。今年春天,通过运用从经验中获得的额外知识,一些面对面的教学和实验室指导恢复了,并持续了整个学期。今年秋天,在经历了整整 18 个月的阴性和阳性结果,以及有效的 COVID-19 疫苗的出现和校园接种率高的情况下,我们的母校恢复了全面的面对面教育和实验室研究。我们北卡罗来纳大学/北卡罗来纳州立大学联合生物医学工程系以极大的乐观和热情这样做,因为我们渴望再次全面承担我们的使命,将工程和医学结合起来改善生活。当你继续阅读时,你会发现一些故事表明我们的部门如何以巨大的势头恢复全职面对面的研究和教育。在研究方面,请注意令人兴奋的报告,包括用于血管愈合的外泌体洗脱支架、用于仿生假肢的神经控制技术、3D 打印的基于聚合物的可生物降解植入物药物输送系统、可结合和中和 SARS-CoV-2 从而防止 COVID-19 感染的源自人肺细胞的纳米颗粒、一种新型 3D 牙科 X 射线设备,以及使用纳米液滴和超声波溶解血栓。我们还宣布了来自 NIH、NSF、男性避孕倡议、Eshelman 创新研究所、美国心脏协会和北卡罗来纳州立大学校长创新基金的大量新研究资金。在教育方面,我们自豪地传递了众多 NIH、NSF 和其他研究生奖学金以及来自 NAE Frontiers of Engineering、北卡罗来纳州立大学(年度电子游戏、马修斯奖章、杰出教学奖)、UNC- Chapel Hill(多样性奖、NC TraCS、TARC)、Beckman、国际医学和生物工程学院、国际艾滋病学会、控释学会、生物力学杂志和 Covintus Tech Tank 推介比赛等赞助商的著名学生和教师学术奖项和荣誉!刚刚引用的文章提供了大量有关我们的项目和我们是谁的信息。我鼓励您就这些激动人心的教育和研究机会联系我们,提出问题或意见,因为联合部门正在热情地将这些机会转变为面对面和现场活动!
摘要 智能水凝胶是一种智能材料,它可以对环境刺激作出反应来控制药物释放1。这篇综述文章讨论了用于药物输送的智能水凝胶的最新进展,包括热响应1、pH 响应、光响应和酶响应系统。我们重点介绍了它们在癌症治疗、糖尿病管理、伤口愈合和神经系统疾病中的应用。我们还讨论了智能水凝胶的优势,包括提高疗效和减少副作用。最后,我们讨论了该领域的挑战和未来方向。1,2 引言 “智能水凝胶是一类先进的生物材料,可以对温度、pH、光和酶等各种刺激作出反应来控制药物释放。1这些智能材料彻底改变了药物输送领域,提供了前所未有的精度、靶向性和功效。凭借其独特的性能和多功能性,智能水凝胶在治疗从癌症和糖尿病到神经系统疾病和传染病等多种疾病方面显示出巨大的前景3。本综述旨在全面概述用于药物输送的智能水凝胶的最新进展,重点介绍其设计、机制、应用和未来发展方向。”4,5 最新进展 - 用于控制药物释放的热响应水凝胶1 - 用于靶向输送的 pH 响应水凝胶2 - 用于按需释放的光响应水凝胶 - 用于靶向治疗的酶响应水凝胶 用于控制药物释放的热响应水凝胶 热响应水凝胶是一种智能水凝胶,它可以响应温度变化来控制药物释放。1 以下是更详细的概述: 原理 _ 热响应水凝胶由聚合物制成,这些聚合物会响应温度变化而改变其膨胀行为。在低于某个温度(最低临界溶解温度,LCST)时,水凝胶会膨胀并具有亲水性,而在高于 LCST 时,水凝胶会脱水并具有疏水性。1,3,4 机理 1. 在低温下,水凝胶会膨胀,从而可以装载药物。1,6 2. 随着温度升高,水凝胶会脱水,释放装载的药物。8 3. 可以通过调节温度和水凝胶性质来控制药物释放速率。7 优点 1. _控释_:温敏水凝胶可以根据特定的温度变化释放药物。6 2. _靶向递送_:水凝胶可以设计为在具有独特温度曲线的特定部位或组织中释放药物。9 3. _生物相容性_:温敏水凝胶由生物相容性材料制成。7 应用 1. _癌症治疗_:化疗药物的靶向递送 6 2. _糖尿病管理_:胰岛素的控制释放6 3. 伤口愈合:持续释放生长因子和抗生素7