摘要:随着纳米级半导体器件尺寸的不断缩小,从复杂的物理方程中获取表面势的解析解变得越来越困难,而这正是 MOSFET 紧凑模型的根本目的。在本文中,我们提出了一个通用框架,利用深度神经网络的通用近似能力,自动推导 MOSFET 表面势的解析解。我们的框架结合了物理关系神经网络 (PRNN),可以从通用数值模拟器并行学习处理复杂的数学物理方程,然后将模拟数据中的“知识”灌输到神经网络,从而生成器件参数和表面势之间的精确闭式映射。本质上,表面势能够反映二维 (2D) 泊松方程的数值解,超越了传统一维泊松方程解的限制,从而更好地说明缩放器件的物理特性。我们在推导 MOSFET 的解析表面电位以及将导出的电位函数应用于 130 nm MOSFET 紧凑模型的构建和电路模拟方面取得了令人鼓舞的结果。这种高效框架能够准确预测器件性能,展现了其在器件优化和电路设计方面的潜力。
快速傅里叶变换 (FFT) 是 20 世纪最成功的数值算法之一,在计算科学和工程的许多分支中得到了广泛的应用。FFT 算法可以从离散傅里叶变换 (DFT) 矩阵的特定矩阵分解中推导出来。在本文中,我们表明,量子傅里叶变换 (QFT) 可以通过进一步将 FFT 矩阵分解的对角因子分解为具有 Kronecker 积结构的矩阵的乘积来推导出来。我们分析了这种 Kronecker 积结构对经典计算机上秩为 1 张量的离散傅里叶变换的影响。我们还解释了为什么这种结构可以利用一个重要的量子计算机特性,使 QFT 算法在量子计算机上的加速比经典计算机上的 FFT 算法快得多。此外,还建立了 DFT 矩阵的矩阵分解与量子电路之间的联系。我们还讨论了基数 2 QFT 分解到基数 d QFT 分解的自然扩展。无需具备量子计算方面的先验知识即可理解本文所介绍的内容。然而,我们相信本文可能有助于读者从矩阵计算的角度对量子计算的本质有基本的了解。
(网络安全)从学术会议2022-2023生效3材料管理:材料管理定义,功能,重要性,与其他部门的关系。购买 - 购买部门使用的目标,采购系统,购买程序,条款和表格。存储功能,将商店分类为集中和分散的商店,并在实际实践中进行劣势和应用。存储的功能,商店维护的记录类型,存储设备的各种类型和应用,需求以及商店编纂的一般方法。库存控制:i。定义。ii.Objectives。iii。用于经济秩序数量(EOQ)和数字示例的表达派生。iv。ABC分析和其他现代分析方法。 v。库存模型的各种型号,例如威尔逊的库存模型,补货模型和两个bin模型。 (只有草图和理解,没有推导。)。 3.6材料需求计划(MRP) - 概念,应用程序和有关市场可用软件包的简要详细信息。ABC分析和其他现代分析方法。v。库存模型的各种型号,例如威尔逊的库存模型,补货模型和两个bin模型。(只有草图和理解,没有推导。)。3.6材料需求计划(MRP) - 概念,应用程序和有关市场可用软件包的简要详细信息。
背景理论必要时。如果学生的主管需要,可以在附录中添加主要方程式的推导。5。要完成的任务 - 这应该描述在研究期间将要执行的一系列预期任务。6。时间表 - 定义完成工作的时间表。7。参考 - 应以适当的学术格式(例如哈佛或作者日期)提供参考列表。8。数字和表格 - 可以将数字和表放置在文档中或文档末尾。每个图和
摘要。适当的田间管理需要高精度、高准确度和高分辨率的植物高度测量方法。研究表明,地面激光扫描 (TLS) 适用于捕获农作物等小物体。本文介绍了用于监测中国水稻田植物高度的多时相 TLS 调查结果。在田间试验和农民常规管理的田地上进行了三次活动。高密度的测量点使我们能够建立分辨率为 1 厘米的作物表面模型,可用于推导植物高度。对于两个地点,TLS 得出的植物高度和手动测量的植物高度之间都具有很强的相关性(R 2 = 0.91),这证实了扫描数据的准确性。根据田间试验的植物高度和生物量样本之间的相关性建立了生物量回归模型(R 2 = 0.86)。模拟值和测量值之间的强相关性(R 2 = 0.90)支持了对农民田地的可转移性。独立的生物量测量用于验证时间可转移性。该研究证明了 TLS 在推导植物高度方面的优势,可用于模拟生物量。因此,激光扫描方法是精准农业的一种很有前途的工具。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证出版。
摘要 — 最近的实验证明了在 DNA 和蛋白质等大分子中存储数字信息的可行性。然而,DNA 存储通道容易出现删除、插入和替换等错误。在 DNA 字符串的合成和读取阶段,会生成许多原始字符串的噪声副本。从这些噪声副本中恢复原始字符串的问题称为序列重建。该问题中的一个关键概念是错误球,它是所有可能序列的集合,这些序列可能由对原始序列应用有限数量的错误而产生。Levenshtein 表明,给定通道恢复原始序列所需的最小噪声副本数等于两个错误球交集的最大大小加一。因此,推导任何通道和任何序列的错误球大小对于解决序列重建问题至关重要。在 DNA 存储系统中,字符串中的多种错误(例如删除、插入和替换)可能同时发生。在这项工作中,我们旨在推导具有多种错误类型和最多三次编辑的通道的错误球大小。具体来说,我们考虑具有单删除双替换、单删除双插入和单插入单替换错误的通道。
结构稳定性是航空航天、土木工程和机械工程等多个工程专业课程的基础硕士课程。该学科的目标是开发在不同载荷作用下结构稳定性的分析方法,以用于结构元件的设计[1]。在航空航天工程的背景下,结构稳定性硕士课程介绍了常见航空航天结构元件(如梁、板和壳)的屈曲现象[2]。在正常授课中,学生将学习控制每个结构元件屈曲的方程的解析推导。这些数学表示总结和组织了有关现象的定量信息,例如变量之间的关键关系。然而,解析推导表现出高度的数学形式主义、抽象性和复杂性[3]。因此,授课往往侧重于数学程序,而不是它们所代表的物理现象。此外,这些方程式无法为从未经历过屈曲的学生提供完整的物理现象图景[4]。因此,学生往往难以将数学表达式与真实世界场景联系起来,也难以理解结构元件的屈曲行为[3]。为了克服这些限制,可以将屈曲试验演示作为常规教学的补充活动。事实上,实验室试验重现了物理现象[5],因此为学生提供了一个环境,让他们直接体验结构的屈曲,并与不同于分析模型的表达式进行互动。因此,本研究的目的是提供一个原理证明
背景。以剪切流为特征的磁化等离子体存在于许多自然环境中,例如地球磁层顶和太阳风。所涉及等离子体的无碰撞性质需要动力学描述。当剪切层的宽度为离子尺度数量级时,可以采用混合 Vlasov-Maxwell 方法。目的。这项工作的目的是在混合 Vlasov-Maxwell 描述中推导出具有平面剪切流的磁化等离子体稳态配置的显式形式。考虑两种配置:第一种是相对于体积速度倾斜的均匀磁场,第二种是均匀幅度可变方向的磁场。方法。我们通过结合单粒子运动常数获得了稳态离子分布函数,这是通过研究粒子动力学得出的。考虑背景电磁场的局部近似,通过分析推导出关于分布函数形式的初步信息。然后建立了数值方法来获得一般分布的解。结果。我们确定了显式分布函数,使我们能够获得密度、体积速度、温度和热通量的分布。还评估了分布函数中的各向异性和无磁性。在均匀斜磁场情况下检查了数值模拟过程中解的平稳性。结论。这里考虑的配置可以用作开尔文-亥姆霍兹不稳定性模拟中地球磁层顶的模型。
单元 1:放大器 16 小时 多级放大器:多级放大器的需求和使用、总增益、级联与共源共栅。RC 耦合放大器。达林顿放大器 - 电路、电流增益、Zi、Zo、优点。功率放大器:电压与功率放大器、功率放大器的需求、分类 A 类、C 类(仅提及)B 类:推挽放大器、工作、效率(推导)、交叉失真、谐波失真、互补对称(无变压器)。比较。调谐放大器:需要单调谐和双调谐、工作、频率响应曲线、优点和缺点、耦合说明。JFET - 类型 - p 沟道和 n 沟道、工作和 IV 特性 - n 沟道 JFET、参数及其关系、BJT 和 JFET 的比较。共源放大器、MOSFET:E&D、MOSFET – n 沟道和 p 沟道、构造、工作、符号、偏置、漏极和传输特性、CMOS 逻辑、CMOS 反相器 - 电路、工作和特性。单元 2:反馈放大器和振荡器 10 小时反馈:反馈类型正反馈和负反馈、框图、反馈对 Av、BW、Zi 和 Zo 的影响(仅适用于电压串联反馈放大器电路)。振荡器的需求;正反馈、储能电路 – 振荡、谐振频率。巴克豪森振荡准则、LC 调谐振荡器 - Colpitts 和 Hartley 振荡器、振荡频率(无推导)、最小增益、优点和缺点、RC 振荡器 - 相移和 Wein 桥振荡器(无推导)、频率和最小增益、晶体振荡器、压电效应、等效电路、串联和并联谐振电路、Q 因子。非正弦振荡器:非稳态多谐振荡器,工作波形,频率公式(仅提及),单稳态多谐振荡器,双稳态多谐振荡器(触发器概念)。 单元 3:集成电路 04 小时 IC555 框图和引脚图。 IC555 应用 - 非稳态(推导)和单稳态多谐振荡器,压控振荡器。 施密特触发器。 IC 稳压器:LM317,IC78XX,79XX 系列(框图) 单元 4:运算放大器(Op-Amp) - 理论与应用 11 小时 Op-Amp 框图,引脚图 IC741,规格,理想和实际运算放大器参数的特性 - 输入偏置电流,输入失调电压,输出失调电压,CMRR,斜率 SVRR,失调零,开环运算放大器限制,闭环运算放大器。负串联反馈放大器的框图,反相和非反相反馈电路,增益,R if ,R of 。虚拟接地,单位增益带宽积。应用:加法器 - 反相和非反相,减法器,比例变换器,缓冲器,积分器,微分器(理想和实用)。比较器,过零检测器,有源滤波器 - 巴特沃斯一阶低通、高通、带通、带阻、全通滤波器。二阶滤波器(仅提及)。自学:04 小时 IC 制造技术。推荐教科书 1、运算放大器和线性电路,Ramakanth Gayakwad PHI,第 5 版,2015 年。2. 应用电子学教科书,RS Sedha