高性能NF层状结构化的Go-amphipHilic聚合物纳米复合膜通过合成的聚合物控制层间间距,以增强水的渗透性和精确的水处理溶质抑制
摘要。本文描述了存在于2025年的社交网络中性别歧视识别的实验室,该实验室预计将在CLEF 2025会议上举行,代表了现有挑战的第五版。该实验室包括两种语言,英语和西班牙语的九项任务,这些任务与三种不同类型的数据相同的三个任务(性别歧视,来源意图检测和性别歧视分类)。这种多媒体方法将有助于确定跨媒体格式和用户互动的性别歧视的趋势和模式,从而有助于更深入地了解社会动态。与2023年和2024年存在一样,该版本将使用“以分歧”的方式使用“学习”。九个任务的数据集将包括来自多个注释的注释,显示不同甚至相互矛盾的意见。这有助于模型从不同的角度学习,使它们更好地理解一系列人类观点,并为有效的以人为本的解决方案发展。
背景:COVID-19 是近代历史上对人类医疗保健、经济和社会的最大威胁之一。到目前为止,尚无缓解迹象,也没有被证实有效的治疗方法。疫苗接种是预防新型冠状病毒的主要生物医学措施。然而,社交媒体上反映的公众偏见或情绪可能会对实现群体免疫的进程产生重大影响。目的:本研究旨在使用机器学习方法提取 Twitter 上与 COVID-19 疫苗接种相关的主题和情绪。方法:我们在 2020 年 1 月至 10 月期间从澳大利亚 Twitter 用户那里收集了 31,100 条包含 COVID-19 疫苗相关关键词的英文推文。具体来说,我们通过可视化高频词云和词元之间的相关性来分析推文。我们建立了一个潜在狄利克雷分配 (LDA) 主题模型来识别大量推文样本中经常讨论的主题。我们还进行了情绪分析,以了解澳大利亚与 COVID-19 疫苗接种相关的整体情绪和情感。结果:我们的分析确定了 3 个 LDA 主题:(1)对 COVID-19 及其疫苗接种的态度,(2)提倡针对 COVID-19 的感染控制措施,以及(3)对 COVID-19 控制的误解和抱怨。所有推文中近三分之二的情绪表达了对 COVID-19 疫苗的积极公众看法;约三分之一是负面的。在 8 种基本情绪中,信任和期待是推文中观察到的两种突出的积极情绪,而恐惧是最主要的负面情绪。结论:我们的研究结果表明,澳大利亚的一些 Twitter 用户支持针对 COVID-19 的感染控制措施并驳斥了错误信息。然而,那些低估了 COVID-19 的风险和严重性的人可能会用阴谋论来合理化他们对 COVID-19 疫苗接种的立场。我们还注意到,公众的积极情绪水平可能不足以将疫苗接种覆盖率提高到足够高的水平以实现疫苗诱导的群体免疫。各国政府应了解公众对COVID-19和COVID-19疫苗接种的看法和情绪,并在支持COVID-19疫苗的开发和临床管理之外实施有效的疫苗接种推广计划。
使用弯曲压电盘的 Tonpilz 压电换能器的频率特性估计 Applied Acoustics Elsevier 第 72 卷,第 12 期,2011 年 12 月 Tomonao Okuyama Kenji Saijo
人们已经尝试过多次语音脑机接口 (BCI),在听觉语音感知、显性语音或想象(隐性)语音期间使用侵入性测量(例如皮层电图 (ECoG))来解码音素、子词、单词或句子。从隐性语音中解码句子是一项具有挑战性的任务。这项研究招募了 16 名颅内植入电极的癫痫患者,在 8 个日语句子的显性语音和隐性语音期间记录了 ECoG,每句句子由 3 个标记组成。具体来说,我们应用 Transformer 神经网络模型来从隐性语音中解码文本句子,该模型使用在显性语音期间获得的 ECoG 进行训练。我们首先使用相同的任务进行训练和测试来检查所提出的 Transformer 模型,然后评估该模型在使用显性任务训练以解码隐性语音时的性能。在隐性语音上训练的 Transformer 模型在解码隐性语音时实现了 46.6% 的平均标记错误率 (TER),而在显性语音上训练的模型实现了 46.3% 的 TER (p > 0.05 ; d = 0.07)。因此,收集隐性语音训练数据的挑战可以通过使用显性语音来解决。通过使用几种显性语音可以提高隐性语音的性能。
强化学习的实际应用中的主要障碍之一是模拟和实际真实环境之间的差异。因此,在模拟环境中训练的政策可能无法在现实世界中产生预期的行动,这是由于噪声,建模不准确和不同环境条件等因素。为了减轻此问题,强大的马尔可夫决策过程(RMDPS)框架集中于设计算法弹性,可弹性。在RMDP中,人们考虑了一个可能的过渡概率和奖励功能的家族,并选择了本集中最坏的案例过渡概率和奖励功能以进行策略优化。最近的研究表明,考虑策略的熵和差异可以捕获给定奖励功能的最坏情况。尽管引入了处理过渡概率的各种算法,但仍存在某些挑战。特别是,分布的支持可能是不一致的,在实际环境中未过渡的状态仍然可以分配非零过渡概率。在这项工作中,我们添加了有关软最佳策略的差异,并用KL差异术语替换了相对于名义环境的过渡概率,替换了最坏的案例过渡概率。可以解决RMDPS的挑战。
Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Aben, R., Abolins, M., AbouZeid, S., Abramowicz, H., Abreu, H., Abreu, R., Abulaiti, Y., Acharya, B.S., Adamczyk, L., Adams, D.L., Adelman, J., Adomeit, S., Adye, T., Affolder, A.A., Agatonovic-Jovin, T., …, Woods, N. (2015)。
评估氯蛋白E6(CE6)放射动力疗法(RDT)以及CE6光动力疗法和5-氨基苯甲酸RDT对胶质细胞瘤细胞对二硫酸氨基蛋白酶和二硫酸脱糖蛋白与信号癌症的综合治疗的胶质细胞瘤细胞研究:效果路径调节/dif
实验室名称1富士实验室2山摩托实验室3山原实验室4萨萨哈拉实验室5木马实验室6 Murata实验室7 Murata实验室8 Kawabata Laboratory 9 Kawabata实验室9 Okubo实验室10 Shibuo Laboratory 10 Shibuo实验室实验室11 Matsuoka Laboratory 12 Yamada Laboratory 13 YAMADA Laboratory 14 Okub sheratory 14 Okuubi fujiuchi 14 o实验室18 SASA实验室19 Shibuo实验室20 Noguchi实验室21 Fujiuchi Laboratory 22 Kawabata Laboratory 23 SASA实验室23 SASA实验室24 Noguchi Laboratory 25 Shibuo实验室25 Shibuo实验室26 IWAI实验室27 SASA实验室27 Sasa Laboratory 28 Kawabata Labotoration 28 Kawabata实验室29 Haseguchi Laguchi Laguchi Laboratory 30 Noguchi Laboratory 31 Noguchi Laboration 31 31 Murata实验室32 Fujiuchi实验室33 Yamada Laboratory 34 Fujiuchi Laboratory 35 Sakamoto Laboratory 36 SASA实验室37 Hasegawa Laboratory 38 Hasegawa Laboratory