在物理和生命科学中具有广泛应用的固态量子传感器 ( 金刚石色心 -NV 氮原子空穴色心 ) ; 探索标准模型之外物理的量子传感器 ( 磁力仪和原子钟,囚禁的极性分子,自旋压缩,控制自旋退相 干,纠缠 ) ; 量子信息处理成为现实 ( 囚禁离子,约瑟夫森结 ) ; 增强型量子传感器的先进材料 ( 光晶格,固态量子缺陷,混合量子系统,拓扑材料 ) ; 用于暗区物理的量子传感器 ( 高 Q 值的射频或微波腔,基于超导干涉效应的高 Q 接收器 ) ; 基于原子干涉测量和光学原子钟的精密时空传感器 ( 量子纠缠 ( “压缩” ) 和量子控制 ( “动态解耦” )) 。
① 输入发行者・授权者的信息。 ② 在传达事项中,请勾选成分信息 ※ 和合规性评估信息。 ※本公司要求FMD (所有成分) 时,请在FMD上打勾后提供。 ③ 请勾选SCIP信息的所有项目。
结构在运行时可以做到即使某一个模态信息缺失整个网络也能取得不错的效果 , 在多通道情感识别、 语义理解、目标学习等领域取得很好的效果 .尽管如此 , 这类网络相对于任务来说还是相对 “ 具体 ”, 如 果要换一个任务 , 用户就需要修改网络结构包括重新调整参数 , 这使得深度神经网络结构的设计是一 个耗时耗力的过程 .因此研究者们希望一个混合的神经网络结构可以同时胜任多个任务 , 以减少其在 结构设计和训练方面的工作量 .鉴于此 , 研究者开始致力于首先采用大数据联合训练构建出多通道联 合特征分享层 , 然后在识别阶段可以同时进行多任务处理的深度多模态融合结构 .如 Google 的学者 尝试建议一个统一的深度学习模型来自适应地适配解决不同领域、不同数据模态下的多个不同类型 的任务 , 且在特定任务上的性能没有明显损失的模型 [71] .该模型构架请见文献 [71] 的图 2, 由处理输 入的编码器、编码输入与输出混合的混合器、混合输出的解码器 3 个部分构成 , 文献 [71] 的图 3 给 出了这 3 个部分的详细描述 .每一个部分的主体结构类似 , 均包含多个卷积层、注意力机制和稀疏门 控专家混合层 .其中 , 不同模块中的卷积层的作用是发现局部模式 , 然后将它泛化到整个空间 ; 注意力 模块和传统的注意力机制的主要区别是定时信号 , 定时信号的加入能让基于内容的注意力基于所处的 位置来进行归纳和集中 ; 最后的稀疏阵列混合专家层 , 由前馈神经网络 ( 专家 ) 和可训练的门控网络组 成 , 其选择稀疏专家组合处理和鉴别每个输入 .
摘要:快速,定期监测和评估区域生物多样性是生物多样性研究和保护的重要意义。近年来,遥感技术已广泛应用于生物多样性研究中,并可以提供区域,大陆和全球生物多样性信息。这种方法是低成本和高数据一致性,并且很大程度上更新了。This paper introduced the principles and advantages of remote sensing in biodiversity re鄄 search, and summarized the main application aspects of biodiversity remote sensing in practice, including landscape indices, NDVI, spectral variation hypothesis (SVH), and hyperspectral re鄄 mote sensing, with the focus on the analysis of the advantages and disadvantages of these applica鄄 tion aspects and the recent research SVH研究和最佳频段选择的进步。指出了遥感生物多样性研究中的缺陷,并且研究了该研究领域的发展趋势,例如模型,遥感者和规模效应。
专门为猫与狗数据集和与铁路相关的数据集。目标是解决公共和专业领域中复杂背景和多角度摄影所带来的挑战。剪辑 - 取回剪辑模型的图像编码器作为其核心体系结构,提取图像特征,并构建一个相似性矩阵,以与不同图像之间的相似性分数。基于排序的结果,它显示最相关的图像。为了验证剪辑 - 恢复的鲁棒性和稳定性,我们进行了比较研究和干扰抗性实验。实验结果显示出显着的进度改进,表明了出色的图像检索效果。具体来说,剪辑回程有效地处理复杂的背景和构成不同数据集的变化,从而提供准确有效的检索服务。
摘要。要实现能够在自然行为期间跨多个时空尺度进行长期神经记录的神经技术,需要新的建模和推理方法,这些方法可以同时解决两个挑战。首先,这些方法应该从多个记录源(例如脉冲和场电位)汇总所有活动尺度的信息。其次,这些方法应该检测自然场景和长期记录期间行为和/或神经动力学状态的变化。先前的状态检测方法是针对单一活动尺度而不是多尺度活动开发的,先前的多尺度方法没有考虑状态切换并且适用于静止情况。在这里,我们通过开发切换多尺度动力系统模型和相关的过滤和平滑方法来应对这两个挑战。该模型描述了多尺度尖峰场活动中未观察到的大脑状态的编码。它还允许使用未观察到的状态状态进行状态切换动力学,该状态决定每个时间步的动态和编码参数。我们还设计了相关的切换多尺度推理方法,从同时发生的尖峰场活动中估计未观察到的状态和大脑状态。我们在大量数值模拟和记录在猴子身上的前额叶脉冲场数据中验证了这些方法,猴子为了获得流体奖励而进行扫视。我们表明,这些方法可以成功地结合脉冲和场电位观测,同时准确地跟踪状态和大脑状态。这样,与单尺度切换方法或固定多尺度方法相比,这些方法可以更好地估计状态。这些建模和推理方法有效地结合了状态检测和多尺度观测。因此,它们可以促进对潜在切换神经群体动态的研究,并通过在出现状态依赖的多尺度活动和行为的自然场景中进行推理来改善未来的脑机接口。
计划是行动之前的审议思维行为(Haslum 2006)。它基于世界的符号模型及其在其中作用的选项,通常在功能 - 无函数的一阶逻辑中定义。规划师必须找到一系列行动(计划),该动作从当前状态带到了期望的目标状态。纯粹的物理描述可以通过部分有序的语法式结构(分层任务网络或HTN)进行增强,描述专家知识,或实用,法律或操作要求。在本次演讲中,我将使用符号方法来调查各种自动得出计划的方法。这些符号方法 - 从某种意义上说 - 将计划问题转化为其他,更简单的符号代表,并推理了这些方法,以找到计划。作为这些方法的基础,我首先将在计划中介绍相关的理论结果。首先,我将讨论规划形式主义的表现力(Houler等人2014; Houler等。2016)和第二,HTN计划的计算复杂及其相关任务,例如HTN计划验证,计划修改和计划识别(Behnke,Houler和Biundo 2015; Behnke等; Behnke等人2016)。基于这些理论结果,我将开发为什么基于SAT的HTN计划以及如何进行基于SAT的HTN计划。为此,我将在顶级会议上调查我的几个公开(Behnke,Houler和Biundo 2017,2018,2019a,b; Behnke等人。接下来,我提出了表达以SAT(Houler and Behnke 2022)的升级经典计划的想法。2020; Behnke 2021) - 在其中,我开发了一个基于SAT的HTN问题计划者,包括找到最佳计划以及接地的能力,以作为预处理步骤。由此产生的计划是第一个基于SAT的计划者 - 事实证明,在出版时表现出了高效且优于所有其他提起的计划者。值得注意的是,Lisat是第一位计划者(被解除或扎根),仍然是唯一一个解决具有挑战性的有机合成基准的计划者,甚至可以证明所有计划的最佳性。最后,我介绍了具有象征性表示的计划概念(Behnke和Speck 2021; Behnke等人。2023) - 使用二进制决策图(BDD)紧凑地编码大量状态。使用BDD注释的finenite自动机的组合,我们可以结构