先进科学技术研究组织,日本横滨 基金会物理学研究中心 (FoPRC),意大利科森扎。 电子邮件:takaaki.mushya@gmail.com 通讯作者详细信息:Takaaki Musha;takaaki.mushya@gmail.com 摘要 已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。本文讨论了通过电重力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它只使用太阳能电池板产生的电能,卫星可以永久绕地球运行并在太阳附近的任何轨道上运行。 关键词:空间推进;卫星;电重力;比菲尔德-布朗效应 介绍 所有航天器都需要一种推进方法。已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。卫星首次发射到预定轨道需要使用常规液体或固体火箭发动机,并具备足够的推进力以克服地球大气层并达到稳定轨道所需的高速度。行星际航天器可能需要这种强大的常规火箭发动机,但也可以依靠功率较小但持续时间较长、ISP 较高的发动机,如离子推进器或霍尔效应推进器。卫星即使进入稳定轨道,也需要可靠的长时间推进方法才能保持功能。即使卫星在轨道上,它也会受到稀薄大气层的阻力和其他力的影响,这些力会随着时间的推移降低轨道。因此,卫星必须能够对其轨道进行微小修正以保持轨道,这称为轨道站保持 [1]。此外,卫星可能需要能够不时从一个轨道转移到另一个轨道 [2],能够保持相对于地球表面、太阳或其他感兴趣的天文物体的特定姿态 [3],并且由于部件故障或其他原因,甚至可能需要以安全和可控的方式脱离轨道。在大多数情况下,当卫星执行轨道调整的推进系统耗尽或无法再产生推进力时,卫星执行其设计任务的能力就结束了,其使用寿命也结束了。目前,卫星通常只使用较小版本的化学火箭发动机或电阻喷射火箭进行推进。有些卫星确实使用电动动量轮进行姿态控制,但由于运动部件的存在,这些动量轮容易发生故障,并且它们可以执行的校正范围有限。最近,卫星开始使用电力推进,例如离子推进器来保持位置并调整轨道,但这种推进器虽然是电力驱动的,他们的供应仍然有限
本文从 2019 年 3 月在挪威胡斯塔德维卡发生的 Viking Sky 游轮故障(停电、失去推进力和近乎搁浅)中汲取教训。游轮行业的故障和事故吸引了全球媒体的关注,并可能严重影响相关公司和当局的声誉和业务绩效。采用系统方法调查和分析 (CAST),旨在通过系统方法最大限度地从 Viking Sky 的故障中吸取教训,并有助于减少游轮行业的故障。这项研究提出了三项主要建议:事故或故障前兆和恢复力指标概述;对其他游轮的安全建议;北极和南极地区增加游轮运营的经验教训和行动策略。研究发现,多种事故或故障前兆,例如润滑油水平低、涡轮增压器故障、大型柴油发电机不工作、恶劣天气导致安全设备无法运行以及其他前兆,导致 Viking Sky 在胡斯塔德维卡遇到故障和极度危急的情况。船长立即决定发出求救信号、船员的准备情况以及处理紧急情况的方式等弹性指标被发现对 Viking Sky 的危急情况产生了积极影响。本文还强调,适应
近年来,机器学习技术在微型游泳机器人开发中的应用引起了广泛关注。特别是强化学习已被证明可以帮助游泳机器人通过与周围环境的互动学习有效的推进策略。在本研究中,我们应用强化学习方法来识别多连杆模型游泳机器人的游泳步态。该游泳机器人由多个刚性连杆通过铰链串联而成,铰链可以自由旋转以改变相邻连杆之间的相对角度。Purcell [“低雷诺数下的生命”,Am. J. Phys. 45, 3 (1977)] 展示了三连杆游泳机器人(现称为 Purcell 游泳机器人)如何在没有惯性的情况下执行规定的铰链旋转序列以产生自我推进力。在这里,我们不依赖任何低雷诺数运动的先验知识,首先展示了如何使用强化学习来识别 Purcell 游泳机器人在三连杆情况下的经典游泳步态。接下来,我们将研究随着连杆数量的增加,学习过程中习得的新游泳步态。我们还考虑了一次只允许单个铰链旋转以及允许多个铰链同时旋转的场景。我们对比了游泳者在这些场景下学习到的运动步态的差异,并讨论了它们的推进性能。总而言之,我们的结果证明了如何应用简单的强化学习技术来识别低雷诺数下的经典游泳步态和新型游泳步态。
推进意味着推动或驱动物体向前。推进系统由机械动力源和将机械动力转换为推进力的装置组成。航天器推进用于改变航天器和人造卫星的速度。当今大多数航天器都是通过将反作用物质加热到高温并以极高的速度从航天器后部排出来推进的。离子产生的推力称为离子推进。离子推进器或离子驱动器是一种用于航天器推进的电力推进形式。它通过用电加速离子来产生推力。产生的推力很低是可以理解的,这种低推力使离子推进器非常适合太空推进,而不适合将航天器或其同类发射到大气层。离子推进器可分为静电推进器和电磁推进器。离子推进器即使没有运动部件也能产生气流。美国宇航局大规模使用这种看似不可能的装置的一个版本来推进他们的太空探测器。该系统相对于其他系统的优势在于,它只需要电源即可启动,几乎牢不可破。该设备使用的 12000V 电压只能点燃一张薄纸。尽管如此,它不会产生气流,因为它内部没有活动部件。更值得注意的是,它可以用非常容易获得的材料建造,例如管件、钉子和霓虹灯变压器。该设备的部分功能只需高压电源的两极即可实现。
在兰利 14 英尺乘 22 英尺亚音速风洞中测试了一个 1/8 比例的翼内风扇概念模型。这一概念是格鲁曼航空航天公司(现为诺斯罗普格鲁曼公司)考虑为美国陆军开发的设计(定为 755 型)。悬停测试在隧道附近的模型准备区进行。随着风扇推力的变化,距压力仪表地平面的高度、俯仰角和滚转角都会发生变化。在风洞中,随着风扇推力的变化,攻角和侧滑角、距风洞地板的高度和风速都会发生变化。在模型准备区和风洞中,针对几种配置测量了模型上的空气载荷和表面压力。主要的配置变化是改变安装在风扇出口以产生推进力的叶片角度。在悬停测试中,随着模型离地面高度的降低,推力消除法向力在风扇转速恒定的情况下发生了显著变化。最大的变化通常是高度与风扇出口直径之比小于 2.5。通过使用叶片将风扇出口气流偏向外侧,可以显著减少这种变化。在风洞中,对许多叶片角度配置进行了滚转、偏航和升力控制测试。还评估了襟翼偏转和尾翼入射角等其他配置特征。尽管 V 型尾翼增加了静态纵向 s
解剖学或功能细节,心脏对我们的爱,联系,兴奋甚至心脏疼痛至关重要。握紧拳头,这就是您内心的大小。健康的成人心脏仅重约10盎司,仅为每磅超过½。询问几乎所有人类解剖学和生理学教授(就像我自己一样),他们会告诉您“心脏是泵”。意味着心脏收缩产生压力推进力,从而将血液降低其压力梯度。对他们有遗憾的是,这就是他们所听到的。此外,显然我们的胸部有一场打击,因此泵似乎是完全可行的。加上各种各样的花园软管的教学类比,很明显,如果血液能够在身体周围流动,则需要有一个中央泵。所以也许我们应该像其他所有人一样接受这一点。科学每天都在改变,但很少与我们所有人分享威廉·哈维(William Harvey)被称为“发现” 1628年的血液循环,他的de motu cordis或“心脏和血液的运动”。是Rene Descartes(Right)在1637年宣布,即使心灵从中散发出来,它也以一种纯粹的机械方式起作用,与柴油发动机的发动机非常相似。井柴油发动机直到这一明显的声明后大约260年才“发明”,因此它告诉我们一些有关这个令人惊叹的思想家的事情。这一说法的纯粹矛盾表明,笛卡尔显然对人类心的真正宏伟本质的理解比他当时能够分享的更多。如果您可以相信,自1637年以来,今天的所有大学水平人类生理学教科书并没有真正取得任何重大进展。因此,尽管几乎每年都有新版本,但这些教科书在过去的386年中继续引用相同的“纯机械”概念。心脏是
输送液体流动的自然结构表现出流动介导力和长期适应之间的相互作用。这种现象与心血管系统有关,其中心腔的几何重塑是导致心力衰竭的病理进展的主要机制。这里分析了心脏中只有一个右心室 (SRV) 的儿童的心脏适应性。在这些患者中,左心室 (LV) 发育不良,健康的右心室 (RV) 在出生后早期通过手术重新连接,以承担系统心室的功能作用。这种情况代表了一种研究心脏适应性的特殊模型,本研究利用了不常见的数据集(64 个正常 RV、64 个正常 LV、64 个具有临床正常功能的 SRV)。从流体动力学和组织变形的角度分析心室功能性能,目的是验证 SRV 配置从原始 RV 适应到向 LV 功能发展的程度。结果表明,由于工作压力较高,SRV 的体积立即增大,几何形状也更宽。然而,流体动力学湍流较弱,推进力减小。周围组织出现肌肉增厚,肌纤维多向取向,模仿 LV。然而,流动性能降低和结构一致性较低使 SRV 面临更高的进行性功能障碍适应风险。这项研究表明了心脏流量和组织反应之间的相互作用如何代表导致心力衰竭发展的宏观驱动因素。更一般地说,联合评估流体动力学和结构功能特性可能是探索不同时间尺度上的适应过程的必要条件。
新墨西哥州立大学 - 先进高空气体 (AHAB) Peter Lobner,2022 年 3 月 10 日更新 21 世纪初,新墨西哥州立大学物理科学实验室正在开发先进高空气体 (AHAB),这是一种太阳能驱动、非刚性、氦超压、空气动力学飞艇,旨在展示可变浮力推进。这种推进方式首次在 1863 年得到展示,当时所罗门·安德鲁斯博士首次驾驶充满氢气的 Aereon 飞艇飞越新泽西州珀斯安博伊。20 世纪 60 年代初,Aereon 公司(与安德鲁斯博士无关)建造了 Aereon III 混合飞艇,该飞艇设计为仅使用可变浮力推进即可飞行。Aereon III 在 1966 年的滑行测试中严重受损,从未有机会展示其可变浮力推进能力。改变飞艇的浮力可以使其爬升或下降。与所罗门·安德鲁斯的 Aereon 一样,AHAB 的设计目的是在重复的跳跃飞行剖面中每次爬升或下降时产生向前的推进力。凭借这种适度的推进能力,AHAB 被设计用于近太空(非常高的高度)的驻留操作,而螺旋桨在这种环境中是无效的。AHAB 飞艇的整体浮力通过内部气囊进行调整。当准备好飞行时,飞艇具有正浮力,并且空气体中的氦超压会压缩气囊。当飞艇滑翔上升时,可以打开排气阀释放气囊中剩余的空气,使未压载的飞行器达到其最大高度(压力高度)。为了过渡到滑翔下降,鼓风机将环境空气泵入气囊,增加飞艇的重量,直到其产生负浮力。通过将气囊排入大气,即可终止下降。
2020 年 2 月 航运业有多种不同的选择来改善船舶的环境性能,从切换到无碳燃料(如氨或氢),到利用船上电池储存的电力产生推进力。在船舶停泊在港口时,为船舶提供岸上电源(OPS),也称为岸上电力(SSE),这是防止空气污染的有效第一步,因为这样船舶就可以关闭发动机,从电网获取能源,而不是继续燃烧污染空气的燃料。由于大多数船舶的规模,它们的能源需求与卡车或乘用车相比很高。因此需要专用于船舶的基础设施。这还将减少港口内的船舶温室气体排放,根据欧盟 MRV 的数据,2018 年港口内的船舶温室气体排放约为 800 万吨,超过了马耳他、塞浦路斯、拉脱维亚或卢森堡的全国总排放量。AFID 没有为航运设定岸上电力(SSE)的目标——它让 MS 根据需求的可用性和成本效益分析来决定。这就产生了一个先有鸡还是先有蛋的问题,尤其是在需要大规模 SSE 投资来建设船舶接入所需基础设施的情况下。一方面,由于只有少数港口提供 SSE,船东不愿意为他们的船舶改装与 SSE 兼容的技术。另一方面,船东没有自愿使用 SSE 的经济动机,因为它比在泊位使用肮脏的重质燃料油更昂贵;因此,大多数现有船舶不兼容 SSE。因此,在进行成本效益分析时,财政拮据的成员国认为 SSE 成本效益低,导致欧洲港口长期无法提供 SEE 的恶性循环。为了克服这个问题,AFID 将注意力集中在 TEN-T 核心网络港口上,理由是这些港口吸引了大部分海上交通并造成最多的空气污染和温室气体排放,因此应优先考虑这些大型港口。这种逻辑的问题在于,可以立即转换为电池电力和电池混合动力推进的船舶类型是滚装/滚卸 (RoRo) 客船和游轮,而这些船舶类型通常
今年的比赛共吸引了来自九个国家实验室的十六支队伍参赛,其中包括四支来自桑迪亚国家的队伍。获胜队伍包括首席研究员玛拉·辛德霍尔茨、企业管理专家温迪·鲁和新墨西哥大学的行业导师罗布·德尔坎波。玛拉说:“能够深入研究并了解问题空间和我们的传感器需要在何种环境条件下工作,有助于我们构建即将对传感器进行的相关环境测试。”该传感器被昵称为 nDETECT,代表能源 I-Corps 计划,可供军方用于监测硝化纤维素和硝化甘油基推进剂的降解,陆军使用这些推进剂作为能量材料,为其弹药(如火箭发动机)提供推进力。“众所周知,这种推进剂会随着时间的推移而降解,尤其是在极端环境条件下,并会开始排放氮氧化物。 “我们的传感器将向军方发出推进剂或武器正在降解的信号,”马拉说。传感器将安装在武器附近。目前用于氮氧化物检测的商业化方案可能需要更高的温度来收集测量数据或在室温下操作,但很容易被污染。桑迪亚开发的传感器由一个交叉电极和一个纳米多孔吸附层组成。纳米多孔材料可以调节以选择性地吸附气体,电响应与气体浓度直接相关。“目前的化学传感器技术价格昂贵,寿命短,可能需要大量维护,”马拉说。“我们的化学选择性纳米多孔电传感器具有成本效益和低功耗。它们的功耗仅为目前化学传感器的百万分之一,并且几乎不需要维护。”马拉说,传感器的数据将更好地为有关武器的安全决策提供信息,并有助于识别排气产品的演变和吸收趋势,从而提高对剩余使用寿命和降解性能的估计。桑迪亚团队包括桑迪亚联合首席研究员蒂娜·尼诺夫和利奥·斯莫尔,他们计划继续与堪萨斯城国家安全园区的合作伙伴一起开发未来原型,以推进该技术的发展。他们计划生产一个原型传感器,并继续与有兴趣使用 Energy I-Corps 的资金获得该技术许可的企业进行讨论。马拉和温迪表示,除了政府和军事合作伙伴的兴趣之外,他们预计私营部门也可能会对这种传感器感兴趣。例如,汽车、煤炭、空气质量和环境监测行业也需要传感器来有效(最好是高效)地检测气体。 走向商业化