摘要:高性能计算(HPC)的局限性严重制约着数值模型的发展。传统数值模型通常采用双精度来保证结果的准确性,但这种做法计算成本较高。虽然使用较低的精度可以大幅降低计算成本,但可能会引入舍入误差,这在特定条件下会影响精度。准双精度算法(QDP 算法)通过保留修正值来补偿这些舍入误差,从而提高结果精度。为了探究该算法对提高数值模型结果精度的有效性,本文将其应用于单精度版本的跨尺度预测模型——大气(MPAS-A),并在两个理想情况和两个真实数据案例中评估其性能。结果表明,应用QDP算法在三种情况下可使表面压力偏差分别降低68%、75%、97%和96%。与双精度试验相比,运行时间分别减少了28.6%、28.5%、21.1%和5.7%。本研究表明,QDP算法为数值模型提供了有效且经济的计算能力。
哥本哈根,丹麦,2025年2月25日 - 巴伐利亚北欧A/S(OMX:Bava)今天宣布与生物E. E. Limited(BE)建立战略合作伙伴关系,以扩大在低层和中等基础国家(LMIC)国家的巴伐利亚北欧北欧Chikungunya疫苗。最初,两家公司已签订了一项合同制造协议,以允许扩大能力,以使未来的LMIC国家供应。本协议包括Chikungunya疫苗的当前药物制造过程的技术转移,并选择在以后转移药物的过程。巴伐利亚北欧人保留了自己的制造能力,用于西方市场即将进行疫苗的商业化。巴伐利亚北欧人继续探索与其通过许可和分销合作伙伴为美国和欧洲以外的市场提供全球访问其基孔肯雅亚疫苗的策略一致的机会。美国疫苗最近和首次批准是12岁以下的第一种chikungunya疫苗,以及欧洲药品局的人类使用药品委员会的积极意见,证明了将监管机构批准扩大到这些市场之外的可行性。“我们很高兴地宣布我们的首次合作,以扩大对奇康古尼亚疫苗的全球访问权限,以及我们与生物E的第一家合作伙伴关系,他们在提供疫苗方面具有扎实的专业知识和全面的经验,以改善全球公共卫生,” Bavarian Nordic的总裁兼首席执行官Paul Chaplin说。由于VLP不含病毒遗传物质,因此疫苗无法感染细胞,再现或引起疾病。“扩大供应是我们解决对解决方案越来越多的解决方案需求的能力的先决条件。 Biological E. Limited董事总经理Mahima Datla女士说:“我们很高兴与巴伐利亚北欧合作,以帮助扩大其在低收入和中等收入国家的Chikungunya疫苗的可用性。我们制造业和成功提供全球疫苗接种的业绩的规模与巴伐利亚北欧协同保持一致,我们致力于利用我们的先进和高效的制造技术来满足地方性地区的健康需求。”关于CHIKV VLP疫苗CHIKV VLP是一种辅助VLP重组蛋白疫苗,用于预防12岁及以上的个体中的Chikungunya病毒(CHIKV)虽然Chikv VLP疫苗的作用机理仍需要进一步表征,但人们认为该疫苗可以通过诱导中和抗体来诱导CHIKV感染的保护,从而导致对某些CHIKV蛋白的中和抗体导致中和实时病毒的中和化。添加佐剂以增加疫苗介导的免疫反应的大小。在2025年2月,美国食品药品监督管理局(FDA)批准了Vimkunya™(Chikv VLP)为12岁以下的第一种Chikungunya疫苗。批准是基于两个3期临床试验的结果,该试验招募了3500多名12岁及以上的健康个体。研究符合其主要终点,结果表明,疫苗接种后的21天,该疫苗在多达97.8%的疫苗接种个体中诱导中和抗体,并且表现出一种快速的免疫反应,开始在一种
普通的英语摘要背景和研究的目的证据表明,尽管英国对Covid-19接种疫苗的意愿在英国通常很高,但在某些年龄和族裔群体中可能会较低。此外,疫苗接种的高意愿可能不会转化为高吸收,尤其是当疫苗推出延伸到年轻同伙时。目前,英格兰的成年人有资格接受Covid-19-19疫苗接种,并提供有关如何预约预约的指示。这项研究的目的是测试行为信息(BI)文本消息是否会增加英格兰18至29岁(尤其是24-29岁的年龄尤其是24岁的年龄)中预订和接受共同疫苗接种的可能性。这是对40-49岁的队列中先前研究的扩展。
锌混合超级电容器(Zn-HSC)对下一代储能系统具有巨大的潜力,可有效地跨越了传统的锂离子电池(LIBS)和超级电容器之间的鸿沟。不幸的是,大多数Zn-HSC的能量密度尚未与LIB中观察到的水平媲美。可以通过用硫醇部分的石墨烯基辐射材料化学功能化水性Zn-HSC的电化学性能,因为它们将非常适合偏爱Zn 2 +吸附/解吸。在此,单步反应用于合成硫醇官能化还原的氧化石墨烯(RGOSH),并融合了氧官能团(OFGS)和硫醇功能,如X射线光电子光谱(XPS)研究所证明。电化学分析表明,RGOSH阴极表现出特定的电容(540 f g-1)和特异性能力(139 mAh g-1),在0.1 A g-1以及长期的长期稳定性以及长期的长期稳定性,具有超过92%的电容性保留量超过92%后,在10000 000级后的化学量后进行了涂层化学效果。值得注意的是,RGOSH电极的特殊最大能量密度为187.6 WH kg -1,功率密度为48.6 kW kg -1。总体而言,这项研究为设计和优化阴极材料的设计和优化提供了前所未有的强大策略,为有效和可持续的储能解决方案铺平了道路,以满足现代能源应用的不断增长的需求。
P-8A是国防部唯一的远程全频谱ASW,Cue-to-Kill平台,具有实质性的ASUW和网络ISR功能。增量3块2提供了对P-8A机身和航空电子系统的显着升级,其中包括新的机身架子,辐射,天线,天线,传感器和接线。修改结合了一个新的战斗系统套件,具有改进的计算机处理和更高的安全架构功能,宽带卫星通信系统,ASW信号智能能力,轨道管理系统以及其他通信和声学系统,以增强搜索,检测和定位功能。
视频供应链合作,供应链Digitalizationsupply Chain订阅敏捷的供应链见解,以最新的以患者为中心的敏捷供应链供应链思想领导含量。订阅敏捷供应链见解,以最新的以患者为中心的敏捷供应链思想领导力内容来了解。
阿拉伯语中的情感分析由于其复杂的形态,多种方言和有限的语言资源而面临独特的挑战。尽管在该领域进行了大量研究,但在情感分类中实现高精度仍然是一个紧迫的问题。在本文中,我们系统地回顾了2018年至2024年发表的阿拉伯产品评论的31项情感分析研究。我们专注于机器学习(ML)和深度学习(DL)技术的最新进步,研究方法,数据集以及取得的绩效结果。我们的评论将情感分析技术分类为基于词典的基于机器学习和混合方法,并特别强调了在阿拉伯情感分析中普遍使用ML模型。审查的研究采用了各种算法,包括幼稚的贝叶斯,决策树,SVM,CNN和Arabert模型等。此外,我们的分析强调了所利用的常见预处理和特征提取技术,以及用于确定这些模型功效的评估指标。尽管取得了显着进步,但我们的发现表明,许多现有方法都没有提供最佳结果。我们认为,未来的研究应考虑实施替代的机器学习模型,并利用全面的数据集,以增强阿拉伯情感分析中当前技术的准确性。
1尼日利亚Zaria 810107的艾哈迈杜贝洛大学电子和电信工程系; eagbonehime1@gmail.com(A.E.E。 ); timothysena93@gmail.com(S.T.T。) 2 2,约翰内斯堡大学电气和电子工程科学系,约翰内斯堡,2006年,南非3号,3奇切斯特大学工程学院,奇奇斯特大学,Bognor Regis PO21 1 HR,英国4电信工程系,空军技术学院(AFIT)技术,拉皮德城,美国SD 57701,美国; Abdulsalamjamiu20@gmail.com 6尼日利亚拉各斯101017的拉各斯大学工程学院电气和电子工程系; aimoize@unilag.edu.ng 7曼彻斯特大都会大学计算机和数学系,曼彻斯特M15 6BH,英国; o.jogunola@mmu.ac.uk *通信:kennedy.okafor@ieee.org1尼日利亚Zaria 810107的艾哈迈杜贝洛大学电子和电信工程系; eagbonehime1@gmail.com(A.E.E。); timothysena93@gmail.com(S.T.T。)2 2,约翰内斯堡大学电气和电子工程科学系,约翰内斯堡,2006年,南非3号,3奇切斯特大学工程学院,奇奇斯特大学,Bognor Regis PO21 1 HR,英国4电信工程系,空军技术学院(AFIT)技术,拉皮德城,美国SD 57701,美国; Abdulsalamjamiu20@gmail.com 6尼日利亚拉各斯101017的拉各斯大学工程学院电气和电子工程系; aimoize@unilag.edu.ng 7曼彻斯特大都会大学计算机和数学系,曼彻斯特M15 6BH,英国; o.jogunola@mmu.ac.uk *通信:kennedy.okafor@ieee.org2,约翰内斯堡大学电气和电子工程科学系,约翰内斯堡,2006年,南非3号,3奇切斯特大学工程学院,奇奇斯特大学,Bognor Regis PO21 1 HR,英国4电信工程系,空军技术学院(AFIT)技术,拉皮德城,美国SD 57701,美国; Abdulsalamjamiu20@gmail.com 6尼日利亚拉各斯101017的拉各斯大学工程学院电气和电子工程系; aimoize@unilag.edu.ng 7曼彻斯特大都会大学计算机和数学系,曼彻斯特M15 6BH,英国; o.jogunola@mmu.ac.uk *通信:kennedy.okafor@ieee.org
如今,纺织业正在构成其东西。一方面,客户可以在个性化移动应用程序上提供多样化的产品,并立即交付和回报。另一方面,由于纺织工艺中的自动化和计算机化的增加,生产比以往任何时候都更有效率。但是,当前的供应链管理系统仍然遇到了几个严重的问题,例如篡改产品,可追溯性差,延迟以及缺乏实时信息共享。今天,一种称为区块链的新技术,这是分散信息技术的开创性创新,它可以解决上述挑战,因为其重要特征(例如分散,透明度和不变性)。在这个方向上,本文提出了一个基于区块链的纺织供应链可追溯性的新框架,该框架可以为所有具有透明度和信息共享的供应链成员提供信息平台。为纺织业创建一个可追溯且透明的供应链,将帮助客户对他们购买的产品及其支持的公司做出明智的选择。对于纺织供应链中的利益相关者,具有可追溯性和实时信息共享可以建立更好的关系,提高效率,并降低产品召回,伪造和不道德的劳动的风险和成本。但是,由于区块链技术仍处于早期阶段,因此它具有一些固有的缺陷,当我们面对现实世界中的质量数据时,可伸缩性成为主要而紧迫的缺陷。因此,我们提出了一种新方法,该方法包括两种是区块链和大数据的技术之间的集成,以大规模填充分散的系统。回答的主要研究问题之一是,如何利用和应用大数据授权的区块链如何通过全球供应链更准确地管理可追溯性和信息共享。在这项研究中,我们研究了可追溯性系统概念和信息共享的必要性,然后介绍区块链整合的大数据框架及其开发过程。最后,评估了该命题的绩效,并提出了可以通过进一步研究来解决这种可追溯性系统的挑战。
摘要。本研究重点是使用MATLAB Simulink与电池的超级电容器(SC)的建模,模拟和杂交。混合系统旨在改善能源输送,减少电荷 - 放电周期并延长电池的寿命。该方法涉及在MATLAB SIMULINK环境中创建SC和电池的详细模拟模型。在不同的负载条件下分析了系统的行为,以评估其在能源存储和功率传递方面的性能。该混合动力系统显示出有望在电动汽车,可再生能源存储和其他高需求应用中使用的潜力。总而言之,SC与电池的杂交增强了能源管理系统,为改善现代储能技术的寿命和性能提供了可行的解决方案。建议使用MATLAB Simulink进行进一步的研究以优化电池。