对称的正定定义(SPD)矩阵渗透到许多科学学科,包括机器学习,优化和信号处理。配备了Riemannian的几何形状,SPD矩阵的空间受到了引人注目的特性及其所使用的riemannian Means,现在是某些应用中的金标准,例如脑部计算机界面(BCI)。本文解决了平均变量缺失的协方差矩阵的问题。这种情况通常发生在廉价或不可靠的传感器中,或者当伪影抑制技术删除导致等级矩阵的损坏的传感器时,阻碍了基于协方差的方法中Riemannian几何形状的使用。一种替代但可疑的方法包括删除缺少变量的矩阵,从而降低了训练集的大小。我们解决了这些局限性,并提出了一种基于大地凸的新配方。我们的方法在生成的数据集上进行了评估,这些数据集具有受控数量的丢失变量和已知基线,证明了所提出的估计器的鲁棒性。在实际BCI数据集上评估了这种方法的实际利益。我们的结果表明,所提出的平均值比经典数据插补方法更适合分类。关键字:SPD矩阵,平均值,缺少数据,数据插补。
大约三分之一的新生儿癫痫发作对包括苯巴比妥在内的第一线抗惊厥药不反应,从而增强了阶段性抑制。当GABA在这个年龄段主要是去极性时,新生儿的癫痫发作是否会降低新生儿的癫痫发作样活性。我们评估了使用THIP [4,5,6,7-四氢异沙唑(5,4-C)吡啶-3-OL,GABOXADOL],δ-s-subunit - 选择性GABA A受体激动剂,降低癫痫发作的活性,使用Neonatal C57bl/6J pers ne pers perseps c57bl/6j,是否会增加富集性抑制作用。急性脑切片。全细胞斑块钳记录表明,thip增强了V层新皮层和CA1锥体神经元中的GABA能抑制性 - 迭代性 - 及其在不改变SEPC特征的情况下增加了其rheobase。两光子钙成像表明,增强两个大脑区域的神经元纤维性的活性降低了神经元纤维。在4-氨基吡啶和低Mg 2+的药物癫痫发作中,以剂量依赖性的方式,thip降低了新皮层和新生儿和成人脑切片的新生儿和成人脑切片的CA1海马区域的癫痫活性。我们得出的结论是,新皮层V和CA1锥体神经元具有滋补性抑制性电导,并且在增强时,它们会减少神经元的结构并降低癫痫发作样活性。因此,增强补品抑制可能是治疗新生儿癫痫发作的可行方法。
摘要计算性能与功耗之间的平衡是计算系统中的关键限制,集成电路技术带有瓶颈。近似计算可以将准确性或误差方案的功率改善进行权衡。分裂具有很高的计算需求和延迟,是计算效率的瓶颈。我们提出了一个基于乘法性能的二次插值近似分隔线(QIAD),该分裂具有较高的统计性能。在TSMC 65NM过程中模拟和合成该设计,并根据图像颜色量化进行了测试,显示了使用诸如PSNR,MSE和SSIM等评估指标的最佳量化效果。关键词:近似计算,分隔线,硬件设计。分类:集成电路(逻辑)
此公式可以更好地估计 xn 附近点 x 处的 f 值,因为公式尽可能早地使用最接近该 x 的数据点,并且还利用了最多 n 阶后向(实际上是相除)差值。同样的推理表明,该公式可能不适合估计远离 xn 的点 x 处的 f 值,即靠近观测数据的中间或开始处。但是,正如下图和下一模块中介绍的数值实验所示,这种限制没有任何实际意义。例 1:设 f(x) = e 2x Cos 3x,其中 x Є [0, 1]。使用 5 次牛顿前向/后向差分插值多项式,在节点 x = 0、x = 0.2、x = 0.4、x = 0.6、x = 0.8 和 x = 1 上找到 f(0.1)、f(0.5) 和 f(0.9) 的近似值。给定 6 个节点和相应的函数值,计算表 2 中给出的前向/后向差分。然后根据牛顿前向/后向差分插值公式,计算 f(0.1)、f(0.5)、f(0.9) 的值并将其与实际值进行比较。
1 华沙大学物理学院实验物理研究所,ul. Pasteura 5, 02-093 Warszawa,波兰 2 弗罗茨瓦夫理工大学技术基础问题学院半导体材料工程系,Wybrze _ ze Wyspia nskiego 27, 50-370 Wrocław,波兰 3 华沙大学化学学院电化学实验室,ul. Pasteura 1, 02-093 Warszawa,波兰 4 北京航空航天大学微电子学院合肥创新研究院,合肥 230013,中国 5 巴塞罗那地球科学中心 (GEO3BCN),CSIC,Llu ıs Sol ei Sabar ıs sn,加泰罗尼亚,08028 巴塞罗那,西班牙 6 弗罗茨瓦夫理工大学实验物理系,Wybrze _ ze Wyspia nskiego 27,50-370 弗罗茨瓦夫,波兰
信息质量评估基本上可以从五个共同维度进行评估:完整性、正确性、一致性、合理性和时效性。[ 29 ] 提供了一个用于描述数据质量维度之一的不同术语表。此外,它们还提供了数据质量维度和数据质量评估方法之间的映射。[ 19 ] 引入了 Sieve,这是一个灵活表达质量评估方法和融合方法的框架。由于移动人群感知 (MCS) 应用会产生大量感知数据,这些数据由能源供应有限的设备收集和预处理,因此在传感器管理方面出现了挑战,以确保实现节能和质量驱动的数据采集过程。[ 18 ] 提出了 G-MCS 模型,并评估了其在不同应用要求和地理传感器分布场景下的节能效果。语义互操作性是平台合作的先决条件,已在文献中得到广泛讨论。symbIoTe[ 31 ] 更进一步,通过引入物联网平台联盟和漫游物联网设备的概念,提出了组织互操作性的新方面。这些平台功能可用于验证用户和数据模式。评估传感物联网数据质量指标的主要挑战之一是缺乏基本事实。当试图在没有任何参考的情况下评估单张图片的质量时,这个问题在图像处理领域是众所周知的。该任务通常被描述为盲图像质量评估 [ 17 ] 或无参考图像质量评估 (NR-IQA) [ 20 ]。为了获得客观的质量指标,NR-IQA 会分析边缘的锐度或噪声水平。虽然这些方法可用于确定数据质量,但它们不适合对
智能电网是融合了节能和可再生能源技术的电网,其实施可能需要对现有电网进行大规模重组和重新设计 [1]。然而,考虑到智能电网的推出将带来众多环境和经济效益,这些转变是重要且必要的。智能电网最大的优势之一是它为能源供应商和消费者带来了灵活性 [2]。例如,需求响应资源可以监控能源需求并支持发电机和负载之间的相互作用,以优化对能源需求的满足,而不会使电网过载 [3]。通常,这些操作会融合可再生能源,例如光伏 (PV) 板和电池储能系统 (BESS)。电动汽车 (EV) 的出现是智能电网中的另一个因素,这带来了一个有趣的挑战 [4]。
气候变化在与水资源管理相关的决策中起着重要作用。了解斯里兰卡的未来气候对于发展适应和缓解策略至关重要。这项研究调查了使用Köppen-Geiger气候分类系统在不断变化的气候条件下,斯里兰卡气候区域的潜在转移,并确定了相关的水文影响。这项研究利用了来自27个气象站的观察到的每日降水数据。使用链式方程(小鼠)算法使用多个插补的预测平均匹配(PMM)和正常插补方法(标准)来估算丢失的数据。使用基于与平均解决方案(EDAS)方法的距离进行评估,评估了耦合模型对比项目阶段6(CMIP6)的15个全球气候模型(GCM)的性能。在将电台数据分配到更高的空间分辨率中,进行了线性回归分析,以发展观察到的站数据点与相应气候危害组红外降水与站点数据(CHIRPS)网格单元格之间的关系。然后将计算出的梯度值(M)用于从GCM到每个Chirps细胞(0.05˚分辨率)分布历史和将来的投影数据。此外,将分布式水文模型与0.05˚×0.05°网格细胞分辨率一起使用,以计算水平衡并识别未来气候变化对盆地水文学的水文影响。
本文提出了一个新的算法追索(AR)框架,即使在缺少值的情况下也可以工作。AR旨在提供一个追索行动,以改变分类器给定的不需要的预测结果。现有的AR方法假设我们可以访问有关输入实例功能的完整信息。但是,我们经常在给定实例中遇到缺失值(例如,由于隐私问题),以前的研究没有讨论这种实际情况。在本文中,我们首先从经验和理论上表明了一种具有单一插补技术的天真方法无法获得有关其有效性,成本和特征要改变的良好动作的风险。为了减轻这种风险,我们通过纳入多个插补的想法来制定为给定的不完整实例获得有效和低成本动作的任务。然后,我们提供了一些关于任务的理论分析,并提出了基于混合企业线性优化的实用解决方案。实验结果证明了与基准相比,我们方法在缺少值的情况下的功效。