暗物质今天可能以超Heavy的复合状态的形式存在。这种暗物质状态之间的碰撞可以释放出强烈的辐射爆发,其中包括最终产品中的γ射线。因此,暗物质的间接检测信号可能包括非常规的γ射线突发。这样的爆发可能并不一定是因为它们的γ射线通量低,而是它们的短暂性和稀有性。我们指出,到目前为止,由于现有和计划中的设施可以在不久的将来检测到后者,其无探测是由于后者而引起的。尤其是,我们建议,通过轻微的实验调整和合适的数据分析,成像大气Cherenkov望远镜(IAIACTS)和脉冲全套近红外的近红外和光学搜索,以寻求外星智能(Panoseti)是可检测如此罕见的,简短而强烈的强烈爆发的有希望的工具。我们还表明,如果我们假设这些爆发源于暗物质状态的碰撞,那么IACTS和PANOSETI可以探测超出现有限制的大型暗物质参数空间。此外,我们提出了一种暗物质的混凝土模型,该模型在这些仪器中产生可能检测到的爆发。
摘要——目前,大量秘鲁中小企业缺乏建立适当仓库管理的资源和工具。这一问题导致仓库物品保管成本高、空间利用率低以及仓库内产品可见性差。因此,本研究的目的是提出一个可实施的模型,供有意改善仓库实践的批发业中小企业实施。因此,本文的贡献基于仓库管理模型的设计,该模型允许组织仓库区域并建立正确的产品摆放方式。该模型由两种经典的库存和仓库管理工具组成,即 5s 方法和 ABC 方法。得到的结果表明,可以将搜索时间从 216.75 分钟缩短到 148.75 分钟;仓库内秩序井然,5S水平提升47%,利用率维持在95%以上,废弃物占用空间降至0。
量子计算中的一个相关问题涉及,根据由合适的驱动汉密尔顿量指定的薛定谔量子力学演化,源状态可以多快被驱动到目标状态。在本文中,我们详细研究了在由多参数广义时间无关汉密尔顿量定义的连续时间量子搜索问题中计算从源状态到目标状态的转换概率所需的计算方面。具体来说,为了量化量子搜索在速度(最短搜索时间)和保真度(最大成功概率)方面的性能,我们考虑了从广义汉密尔顿量中出现的各种特殊情况。在最佳量子搜索的背景下,我们发现在最短搜索时间方面,它可以胜过著名的 Farhi-Gutmann 模拟量子搜索算法。相反,在近乎最佳的量子搜索的背景下,我们表明,只要寻求足够高的成功概率,就可以识别出能够胜过最佳搜索算法的次优搜索算法。最后,我们简要讨论了速度和保真度之间的权衡的相关性,重点强调了对量子信息处理具有理论和实际重要性的问题。
注意力障碍的矫正是脑外伤 (TBI) 后认知康复的重要组成部分。来自健康参与者的证据表明,玩动作视频游戏后注意力有所提高。这项探索性研究采用多基线单案例实验设计 (SCED) 调查了其在 TBI 参与者中的应用。扫视眼球运动被认为是视觉注意力的可见指标,通过评估游戏训练的有效性。三名严重 TBI 参与者接受了 10 小时的动作游戏训练。在基线、训练中和训练后研究了自定步调扫视和抽象视觉搜索任务期间的扫视眼球运动。使用非重叠数据百分比 (PND),分析显示参与者 1(PND=80%)和 2(PND=70%)的自定步调扫视率持续增加。在抽象搜索中,参与者 2 的注视持续时间 (PND= 60%) 显示出轻微的有效减少,参与者 3 的注视持续时间 (PND= 80%) 显示出中等的有效减少。参与者 2 的搜索时间 (PND= 100%) 显示出高度的有效减少,参与者 3 的搜索时间 (PND=70%) 显示出中等的有效减少。总体而言,视频游戏训练可能会改变眼球运动中的注意力分配。需要更多证据来验证这种新认知训练方法的有效性。
智能停车系统利用传感器,物联网和自动化软件等高级技术来优化停车过程。通过在可用空间提供实时信息,有效地指导驾驶员并实现非接触式付款,可以减少搜索时间,交通拥堵和排放。此外,智能系统可以提高安全性,通过移动集成来增强用户体验,并提供数据驱动的见解,以更好地管理和未来的计划。这种聪明的方法不仅增加了停车位的利用,而且还促进了城市地区的成本效率和环境可持续性。
3 在其他内感受领域中,我们还可以列举泌尿生殖系统(Drake 等人,2010 年)、本体感受(Tuthill 和 Azim,2018 年)、伤害感受(Simons 等人,2014 年)和热感受(Bligh 等人,1990 年)。4 我们选择包含预印本,以确保我们不会忽略任何尚未正式发表的高质量任务。最后,只有一篇文章是预印本(Palmer 等人,2019 年)。因此,这篇文章对我们的主要结论的整体影响可以忽略不计。5 除 OSF 预印本和 Web of Science 外,搜索时间分别在 12 月 3 日和 8 日。
建立在HXGN SDX的可靠成功基础上,HXGN SDX2是Hexagon的下一层次,云本地的SaaS,SaaS,用于工程,操作和维护方面的卓越解决方案。它包括一套新的和丰富的功能,包括资产生命周期数据和信息管理,资产建模和可视化,工程变更,工程包装文档管理/文档控制以及设计审查和问题管理。这些基础能力会流畅地整合关键数据,促进透明度,效率,生产力和更明智的决策,同时降低风险并降低成本。毫不费力地将整个组织的数据消费者连接到按需信息,减少搜索时间并加速决策速度。
3。数学进度今天使用的密码学是基于难以解决的数学表问题 - 但困难并不意味着不可能。没有证据表明这些问题没有简单的解决方案。搜索时间越长,对数学问题难度以及加密过程的安全性的信任就越大。iSote -basisente sice sike的案例提醒,这种信任可以在2022年脆弱。经过多年的检查,发现了一种新的简单解决方案,用于基础数学问题问题,从而打破了整个加密过程。可以在几个小时内计算出在Diffie Hellman密钥交换过程中传输的数据,可以计算秘密密钥的特征。8仍处于初步检查的阶段,尚未标准化。只有在基于其他数学问题的加密过程中,才能在实践中反驳加密驾驶基本问题的数学破坏。
上个世纪的量子力学进步导致了使用该物理学分支在1980年代的定律中出现计算理论。能够依靠一个信息单位的事实,即可以在经典位的基本状态叠加的量子,这打开了提高迄今为止现有计算机的计算能力的可能性。超级计算机无法在合理时间内无法解决的一些问题被放置在此新计算范式的范围内。这就是所谓的量子至上。迄今为止最重要的量子算法之一是Grover的算法[1]。在n个元素列表中找到元素的日常生活问题,例如电话簿中的一个电话号码是通过一个元素一个一个一个一个一个一个元素的一个人来解决的。这意味着当列表增长时,搜索时间会成比例地增长,从而导致O(n)缩放。Grover的算法可拟合叠加原理,并能够在O中找到元素(√