光学显微镜是生物学中最强大的工具之一。能够在广泛的尺度上可视化生命结构和事件的能力导致了基础发现。同时,为了更有效地研究活体组织,需要克服一些限制。例如,在传统显微镜中,样品要么在整个成像场上同时被照亮(宽视野照明),要么逐个像素依次被照亮(点扫描照明)。宽视野方法可以高速成像,因为它使用相机一次捕获二维图像,但它会受到光散射产生的像素串扰的影响。在点扫描方法中,单个像素检测器捕获荧光信号并逐个像素构建图像;当使用双光子激发时,它会大大减少光散射的串扰。但是,虽然双光子显微镜适合对散射组织深处进行成像,但作为一种点扫描方法,其成像速度较慢。
在过去的二十年里,冷分子研究从一个新兴领域发展成为一股强大的科学潮流,拓展了物理科学的视野 1 – 3 。科学界目前正在见证从早期的抱负到有影响力的科学成果和新兴技术的转变。从冷却分子到未探索的低能状态的开创性想法 4 , 5 为更成熟的目标驱动分子量子态控制追求开辟了道路 6 。化学相互作用的研究越来越详细,包括单个反应途径和共振 7 – 9 。分子复杂性已成为展示复杂量子控制和探索新兴现象的一个特征 10 – 15 。通过使用外部场操纵分子来实现具有长程、各向异性相互作用的可调多体哈密顿量的几种想法已经扩展了量子模拟的前景 16 – 20 。具有延长相干时间的分子现在设定了更严格的限制,为量子传感以及探索基本对称性和标准模型以外的新物理开辟了新天地 21 – 23 。此外,对复杂分子的越来越精确的控制恰好符合量子信息的新兴主题,它建立在微观量子系统的高保真操纵之上 24 – 27 。鉴于分子在广泛的物理过程中发挥的核心作用,冷分子领域的进展正在将来自不同学科的科学家聚集在一起。粒子物理学家对使用分子来寻找逃避粒子和场很感兴趣。凝聚态物理学家正在构建量子材料
遗传害虫管理策略在 20 世纪初被提出,并于 20 世纪中期开始实施,其中昆虫不育技术 (SIT) 是其中的佼佼者 (130、131、202)。在 SIT 中,不育雄性被释放出来与野生雌性交配,随着时间推移,这种技术频繁大规模释放,可以抑制甚至消灭种群。该领域的早期工作依赖于辐射来产生不育突变 (17、131、207)。大规模实施该技术取得了巨大成功,彻底消灭了北美大部分地区的新大陆螺旋蝇 (131),并抑制了其他一些物种 (83、179)。然而,遗传和其他技术挑战阻碍了抑制某些物种的尝试取得成功。在开展这项工作的同时,人们探索了许多其他控制方法,这些方法基于转基因时代之前对害虫遗传学的操作(例如易位和倒位),但总体上并没有取得很大的成功(100)。人们开始思考用于种群管理的遗传技术,特别是那些旨在自我维持的技术,这种思考始于 50 多年前(64, 201),其灵感来自于生命各个领域中越来越多的自然发生的自私遗传元素 [以下称为基因驱动 (120)] 的行为。许多这样的基因驱动是在遗传学领域早期发现的,通常是由于意外的突变率、性别比例偏差或特定基因型的死亡率而偶然发现的。这些驱动有利于它们的传播,而牺牲了基因组中的其他基因。这种行为可能导致这些驱动相对于相应的染色体对应物扩散,即使它们的存在会给携带者带来适应度成本(即降低整个种群的适应度)(78、95、104、178、226)。自然产生的基因驱动在形式和机制上千差万别,包括性别比例扭曲元件、减数分裂驱动元件和毒素-解毒剂系统(3、66、67、104、117、148)、转座元件(157、178、188)、可遗传微生物(62、80、225)和归巢内切酶(37、38)。这些自然基因驱动的潜在机制启发了合成基因驱动系统的创建(120)。
检查、加油、升级、维修或救援卫星,清除轨道碎片,以及建造和维护大型轨道资产和基础设施等要求对于在轨空间基础设施的维护非常重要。到目前为止,所有值得注意的维修任务都是由宇航员舱外活动 (EVA) 在低地球轨道 (LEO) 上执行的。然而,这些操作风险大、成本高、速度慢,有时甚至不可行。EVA 可以被机器人在轨维修 (OOS) 取代,在此期间,任务由空间机械手系统 (SMS) 执行,在文献中也称为追逐者或服务者。它们由一个卫星基座组成,该基座配备一个或多个带有抓钩装置的机器人机械手(臂),并由视觉系统驱动,从而能够捕获目标(客户)卫星。SMS 也可以是安装在空间设施上的大型维修机械手。本研究课题重点关注在轨操纵和捕获,以及与这些活动相关的方面。因此,它包括与刚性和柔性 SMS 的动力学、相关的接触动力学、空间系统的识别方法、监控和控制所需的姿势和状态感测、抓取目标的运动规划方法、运动或交互任务期间的反馈控制方法以及此类系统的地面测试试验台相关的工作。该研究主题包括五篇文章。在《从空气轴承支撑的测试数据估计空间机械手的振动特性》中,李等人从理论和实验上研究了与平面实验测试试验台相关的问题,该试验台使用空气轴承垂直支撑缩放 SMS 并在平面上创建零重力环境。作者指出,空气轴承会影响缩放 SMS 的动力学行为,从而影响其表观关节的刚度和阻尼、固有频率和振动响应。作者提出了一套程序来消除空气轴承的影响,并从电机制动系统的测试数据中识别真实的等效关节刚度和阻尼。识别惯性特性,并使用遗传算法确定等效关节刚度和阻尼。通过消除空气轴承引起的额外惯性,可以估算出机械手的真实振动特性。在《废火箭级在轨机器人抓取:抓取稳定性分析和实验结果》中,Mavrakis 等人研究了废火箭级的抓取,分析了抓取稳定性,并展示了实验结果。提出了一种评估废火箭级机器人抓取稳定性的新方法,该方法基于计算 Apogee Kick Motor 喷嘴的两指抓取的固有刚度矩阵,并将稳定性指标定义为局部接触曲率的函数,材料特性、施加的力和目标质量。稳定性指标是
摘要:许多轮椅使用者依赖他人来控制轮椅的移动,这严重影响了他们的独立性和生活质量。智能轮椅提供了一定程度的自立和驾驶自己车辆的自由。在这项工作中,我们设计并实施了一种低成本的软件和硬件方法来操纵机器人轮椅。此外,从我们的方法中,我们基于 Flutter 软件开发了自己的 Android 移动应用程序。我们还开发并配置了一种基于卷积神经网络 (CNN) 的网络内 (NIN) 结构方法,该方法与语音识别模型相结合,以构建移动应用程序。该技术还使用软件和硬件组件之间的离线 Wi-Fi 网络热点来实施和配置。五个语音命令(是、否、左、右和停止)通过 Raspberry Pi 和直流电机驱动器引导和控制轮椅。整个系统基于阿拉伯语母语人士针对孤立词训练和验证的英语语音语料库进行评估,以评估 Android OS 应用程序的性能。还从准确性方面评估了室内和室外导航的可操作性性能。结果表明,五个语音命令中的一些命令的准确预测准确度约为 87.2%。此外,在实时性能测试中,室内/室外操纵的计划节点和实际节点之间的均方根偏差 (RMSD) 值为 1.721 × 10 − 5
速度 ˙ ˜ xc ,我们可以将方程 (2) 展开到二阶,其中 ˜ x − 1 ≈ ˙ ˜ xc ∆ ˜ t 和 ˜ x − ˜ t + ˜ D ≈ ( ˙ ˜ xc − 1)∆ ˜ t
图 3:OT 系统和光学原理图,以及通过不同 OT 设置进行光学微型机器人操作的概念图。(a)基于分时生成多个激光点的传统 OT 系统;相应 OT 系统的光学原理图。(b)使用传统 OT 系统灵巧操作光学微型机器人的概念图。(c)可以产生多个激光点的传统全息光镊 (HOT) 系统;相应 HOT 系统的光学原理图。图片来自 [13]。(d)使用 HOT 系统灵巧操作光学微型机器人的概念图。面板 (a) 根据 CC-BY 许可条款从 [14] 复制。版权所有 2020,作者,由 Wiley 出版。面板 (c) 经许可从 [13] 复制。版权所有 2019,IEEE。
背景:免疫系统与肿瘤直接相关,从肿瘤形成到肿瘤的发展和转移。因此,科学家对保护性免疫机制的兴趣日益增加,并在癌症治疗中展现出天才的策略。证据获取:基因工程和细胞免疫疗法是两种不同的先进分子机制,用于修改免疫反应和基因组。基因操作是一种生物工程技术,允许载体将新的遗传信息转移到靶细胞中。细胞免疫疗法是一种连接人体免疫系统对抗癌症的极好策略。结果和结论:本综述描述了基因工程和细胞免疫疗法的结合带来了新的抗肿瘤抑制分子,阻止了肿瘤组织的免疫耐受,并显著扩大了癌症治疗的有效性。通常,细胞免疫疗法和基因工程被认为是两个独立的过程,在本综述中,我们认为它们是结合的。在这里,我们回顾了这两种新方法,它们都是技术进步和临床经验的结合。
大麻 (Cannabis sativa L.) 可产生独特的植物大麻素,可用于制药。迄今为止,尚无针对大麻素生物合成基因的体内工程改造的报道,以更详细地阐明这些基因在这些具有医学重要性的化合物的合成中的作用。本文报道的是首次使用农杆菌浸润 RNAi 调节大麻素生物合成基因。用对应于 THCAS、CBDAS 和 CBCAS 基因序列的不同 RNAi 构建体转染的 Cannbio-2 C. sativa 菌株的真空浸润叶段使用实时定量 PCR 显示所有大麻素生物合成基因均显著下调。使用 RNAi 会发生显著的脱靶,导致高度同源转录本的下调。使用 pRNAi-GG-CBDAS-UNIVERSAL 观察到 THCAS (92%)、CBDAS (97%) 和 CBCAS (70%) 的显著 (p < 0.05) 下调。转染 pRNAi-GG- CBCAS 后,观察到 CBCAS (76%) 显著 (p < 0.05) 上调和 THCAS (13%) 不显著上调,表明相关基因能够合成多种大麻素。使用这种方法,可以进一步阐明对大麻素生物合成基因之间关系的理解。这种 RNAi 方法使功能基因组学筛选成为可能,可用于进一步的反向遗传学研究以及设计大麻菌株,其中目标大麻素生物合成基因过度表达和/或下调。诸如此类的功能基因组学筛选将进一步深入了解大麻中大麻素生物合成的基因调控。
量子计算将彻底改变技术,改变从密码学到制药等各个行业。然而,要发挥量子计算的潜力,需要在物理量子比特实现方面取得突破。在众多有前途的系统中,包括超导电路、分子和光阱,还没有一个系统能够展示大规模量子计算所需的可扩展性。半导体中的自旋态是迄今为止发现的最稳定、抗噪声的量子比特之一。此外,半导体中的供体原子基本相同,使其成为可扩展量子设备的有力候选者。这项研究旨在利用锗的原子级精密制造来开发下一代量子设备,锗是一种有望克服当前可扩展性挑战的材料。