摘要 - 本文介绍了与空中操纵器合作的硬件模拟器。模拟器为用户提供了适用于人冲水器交互活动的逼真的触觉反馈。测量硬件界面和Human/环境之间交换的力,并提供给动态模拟的空中操纵器。反过来,模拟的空中平台将其位置反馈到硬件,从而使人类能够感觉到并评估相互作用的效果。除了人冲洗操作器的合作外,模拟器还提供了发展和测试空中操纵中的自主控制策略。因此,对拟议系统的有效性以及两个案例研究进行了评估:一个协作任务,其中人类操作员将工具附加到机器人最终效用器和一个自动鸟分流器的安装任务。
召唤InterReg Trans-Manche Corot项目(2017-2022)具有最新的目标,可以通过为他们提供一定数量的工具和培训来支持Transmanche Arc在行业4.0中的SMP。在提出的新技术方面,重点放在移动刺激器的设计和实施上。在本文中介绍了在Greah实验室中研究和执行的机器人移动操纵解决方案,以便能够在商店中进入原始部分,并通过越过不同的研讨会来安全地运输它们,然后将它们精确地放在机器工具的颚中。要独立运行,此过程中的每个步骤都需要使用鲁棒算法和遇到的约束的固定建模。建议的记忆使使用Arti-Fiel Intelligence算法删除科学锁并为用户公司开辟新的观点是可能的。
对自动移动操纵器的需求是多种应用程序中的几种应用程序的核心,例如精密农业[1],工业安装[2],搜索和救援[3]或人类援助[4]。一般而言,移动操纵器必须同时执行移动基础的导航任务,并为机器人臂进行操纵。必须考虑几个挑战以执行这两个任务。从感知的角度来看,机器人系统必须配备可以检测不同地标并分析周围环境的传感器。此外,有必要确保用于执行任务的地标保留在传感器的视野中。从控制的角度来看,控制方案必须同时处理移动基础和机器人组,以使两个子系统之间的协作并避免惩罚完成另一个任务的动作。最后,有必要将机器人臂的控制与移动基础的位移进行协调,以避免机器人系统通过延伸的臂导航的情况,从而在末端效果下导致显着振动,并增加与外部元素奇异构型和碰撞的风险。与任何机器人系统一样,有许多控制移动操纵器的方法。广泛使用的解决方案包括在欧几里得空间中表达任务。在这种情况下,机器人使用板载传感器来估计系统配置。LIDAR型传感器提供几何数据,从而可以准确估计,但不能提供对环境的先进感知。基于视觉的传感器提供丰富的环境信息,但姿势估计对错误高度敏感。使用摄像机时,另一种广泛使用的解决方案
本文介绍了具有不同自治水平的移动操纵器中当前研究状态的迷你审查,强调了它们相关的挑战和应用环境。在不同环境中需要移动操纵器,尤其是危险的操纵器,例如退役,搜救和救援,这是由于各种挑战和风险所面临的独特挑战和风险。在这些环境中部署的许多系统不是完全自主的,需要人类机器人的团队来确保在不确定性下安全可靠的操作。通过此分析,我们确定了有关可变自主权的文献中的差距和挑战,包括认知工作量和沟通延迟,并提出未来的方向,包括用于移动操纵者的全身自治,虚拟现实框架,大型语言模型,以减少操作员在某些挑战性和不确定方案中的复杂性和认知负载。
工业部门正在经历一个变革阶段,随着先进的机器人技术和人工智能(AI)技术的整合。本论文,探讨了数字双技术的协同应用以及增强学习在增强工业环境中机器人操纵器的效率和适应能力方面的应用。这项研究的核心前提重点是解决动态和复杂工业环境中手动程序方法的局限性。手动编程通常缺乏在各种且无法预测的环境中有效操作所需的适应性和学习能力。加固学习的合并使机器人操纵者能够通过与环境的互动来学习和调整,从而提高了运营效率,并最大程度地减少了对广泛编程工作的需求。数字双胞胎是物理环境的数字虚拟复制品。这允许在受控的,无风险的设置中对机器人操纵器行为进行模拟,分析和优化。将数字双胞胎与增强学习的集成能够对机器人系统进行有效的培训,从而使他们能够学习复杂的任务并适应新场景,而无需与现实培训相关的身体磨损和风险,并设置了环境。研究方法涉及开发数字双胞胎模拟环境,强化学习算法在此环境中的机器人操作器中的应用,并引起了学习任务转移能力对现实应用程序的重要性。该研究还研究了与数字双胞胎和加强学习技术相关的挑战。预期的结果包括提高机器人操纵器在工业应用中的适应性和效率,从而减少了为特定任务提供机器人所需的时间,成本和资源。此外,预计自动驾驶机器人操作的安全性和可靠性增强。这项研究旨在证明强化学习和数字双技术在转变工业机器人技术方面的潜力,从而为机器人应用提供了更具灵活,高效和智能的开发过程。本文对工业自动化的未来具有重要意义,为更适应性,高效和智能机器人系统提供了一种途径。通过利用AI和模拟技术的最新进步,它旨在为工业机器人技术的发展做出贡献,为更先进的工业解决方案铺平道路。
摘要 - 与环境对象的互动可以引起外部感受和本体感受信号的重大变化。然而,水下软操作器中外部感受传感器的部署遇到了许多挑战和约束,从而对其感知能力施加了限制。在本文中,我们提出了一种基于学习的新型表达方法,该方法利用内部本体感受信号并利用软执行器网络(SAN)的原理。def> div>趋势倾向于通过水下软操作器中的sans传播,并且可以通过本体感受传感器检测到。我们从传感器信号中提取特征,并开发完全连接的神经网(FCNN)基于分类器以确定碰撞位置。我们已经构建了一个培训数据集和一个独立的验证数据集,目的是培训和验证分类器。使用独立的验证数据集以97.11%的精度识别出碰撞位置的实验结果,该碰撞位置在水下软机器人的感知和控制范围内表现出潜在的应用。
本文提出了一种针对移动操纵器系统(MMS)的新控制策略,该策略集成了基于图像的视觉伺服(IBVS),以解决操作限制和安全限制。基于控制屏障功能(CBF)的概念的拟议方法提供了一种解决方案,以应对各种操作挑战,包括可见性约束,操纵器关节限制,预定义的系统速度界限和系统动态不确定性。提出的控制策略是两层结构,其中第一级CBF-IBVS控制器计算控制命令,并考虑到视野(FOV)约束。通过利用空空间技术,这些命令被转移到MMS的联合配置,同时考虑系统操作限制。随后在第二级中,用于整个MMS使用的CBF速度控制器对关节级的命令进行跟踪,以确保遵守预定义的系统的速度限制以及整个组合系统动力学的安全性。拟议的控制策略提供了出色的瞬态和稳态响应,并提高了对干扰和建模不确定性的弹性。此外,由于其计算复杂性较低,因此可以在板载计算系统上轻松实现,从而促进实时操作。通过仿真结果说明了拟议策略的有效性,与常规IBVS方法相比,该结果揭示了增强的性能和系统安全性。结果表明,所提出的方法可有效解决移动操纵器系统的具有挑战性的操作限制和安全限制,使其适合于实际应用。
图1:我们开发了一个带有自动基础(左)的开源移动操纵器,并证明它可以在真实的公寓房屋(右)中执行各种家庭任务。
摘要:利用最近在模仿学习中进行操作的前进的承诺将需要收集大量的人类引导示范。本文提出了一种开源设计,用于廉价,健壮且灵活的移动操纵器,该设计可以支持任意武器,从而实现了各种各样的现实世界家庭移动操纵任务。至关重要的是,我们的设计使用动力施法者使移动基础能够完全自动,能够同时独立地控制所有平面自由度。此功能使基础更具机动性,并简化了许多移动操作任务,从而消除了在非实体基础中产生复杂且耗时的动作的运动限制。我们为机器人配备了直观的手机遥控接口,以实现简单的数据获取以进行模仿学习。在我们的实验中,我们使用此界面来收集数据,并表明所产生的学习政策可以成功执行各种常见的家庭移动操纵任务。