(或溶剂混合物),可进一步加工成可印刷或可涂覆的油墨。这些悬浮液的行为通常用 Derjaguin-Landau-Verwey-Overbeek (DLVO) 理论描述,[3] 这意味着悬浮液中纳米片的浓度有一个上限,超过该上限悬浮液就会变得不稳定。[4] 尽管如此,高浓度悬浮液(油墨)对于形成渗透粒子网络是必要的,[5] 并且满足高通量印刷和涂层方法的流变学要求(例如高粘度)。无论浓度如何,悬浮液在热力学上都是不稳定的,并且粒子倾向于通过聚集来降低其表面能。[6] 为了降低沉降速度,必须最小化溶剂和 2D 材料之间的表面能差异,[3] 这使得分散介质的选择限制为少数溶剂,而这些溶剂的溶解度范围可能不适合后续加工。在传统的油墨配方中,为了解决上述问题,将二维材料悬浮液加工成可印刷或可涂覆的油墨,需要使用表面活性剂、粘合剂和流变改性剂等添加剂。[7–10] 例如,需要高浓度的聚合物粘合剂(如70 mg mL-1乙酸丁酸纤维素)来将石墨烯油墨的粘度提高到适合丝网印刷的水平。[11] 由于典型的添加剂会对电子性能产生不利影响(例如,
喷射混凝土必须适合现场运输(泵送)和应用(喷涂)过程。因此,必须获得合适的稠度和流变性以便浇注。本文评估了各种粘度调节剂 (VMA) 对湿混喷射混凝土流变性和触变性的影响。使用了六种 VMA,根据其成分分为三组:基于二氧化硅、层状硅酸盐的添加剂和聚合物添加剂。在砂浆中深入研究了这些流变改性剂,获得了材料的屈服应力 (τ o ) 和塑性粘度 (μ) 的值,以及触变性(滞后面积),它代表了流体结构恢复所需的能量。为了获得这些参数,使用实验室流变仪在动态状态下测试流体,并施加剪切速率斜坡。此外,通过在流动台试验中获得流动台直径来确定砂浆的稠度。该评估是在含有不同含量的高效减水剂 (SP) 的砂浆中进行的。所有这些信息使得评估 SP 与每种 VMA 结合的影响成为可能,获得一个可工作性箱,确定滞后区域并验证哪些组合获得了优于对照混合物(不含 VMA)的流变行为。所述结果与现场进行的喷射混凝土混合物中获得的回弹指数相关。砂浆的触变性和现场的回弹率值导致了最准确的相关性,从而可以选择最有效的 VMA 用于喷射混凝土。最后,两种综合结果(实验室和现场)允许一种有助于设计和优化湿混喷射混凝土的分析过程。
- Synaqua® 生物基水性树脂的可再生基含量高达 97%,将醇酸树脂涂料的性能与水性配方的优势相结合。这项创新通过减少有害物质的排放和最小化碳足迹来提高涂料的性能。- Crayvallac® 高性能生物添加剂将性能和可持续性与其蓖麻衍生物和生物基聚酰胺添加剂相结合。这些流变改性剂的生物含量从 60% 到 100%,有助于提高循环性并促进非化石原料的使用。该公司还将逐步推出粉末和丙烯酸基生物质量平衡解决方案作为补充途径,以支持我们的客户提供高性能解决方案、更多的循环采购和减少碳足迹的解决方案。气候意识技术,打造凉爽表面 阿科玛提供一系列凉爽屋顶技术,以提高室内热舒适度并降低空调消耗。这些包括两种树脂的独特组合,Kynar Aquatec ®,一种超耐用的反光涂料和 Encor ®,一种用于防水和耐久性的丙烯酸弹性乳液,含有 2 种添加剂,Coapur ™ PU 增稠剂可提高兼容性和控制性,Coadis ™ 是一种分散剂,可提高白度和稳定性。节能解决方案 随着行业面临能源成本上升、排放法规越来越严格以及向低碳密集型应用转变,阿科玛提供节能解决方案,采用 Sartomer® UV-LED 和 EB 固化技术,这些技术是低 VOC 和低碳密集型涂层技术。
1.引言木质素是一种结构复杂、难以水解的聚集体,木质素、纤维素和半纤维素是构成植物骨架的三大天然高分子化合物,它们的重量约占植物重量的20%。另外,全世界可以生产大量的木质素,木质素廉价、无毒、无污染,是优良的绿色化学原料[1,2]。造纸工业会产生大量的造纸废液,从造纸废液中提取的木质素被称为工业木质素[3,4]。因此,从工业木质素中提取的木质素不仅成本低廉、可再生降解,而且具有多种活性功能基团,受到了人们的广泛关注。例如木质素的主要化学成分是木质素磺酸盐(图1)和碱木质素,它们带有一些表面活性基团,如羧基、酚羟基等亲水基团以及丙基和苯环等疏水基团,因此木质素在油田化学品、表面活性剂、环保缓蚀剂、沥青改性剂等绿色化学领域具有潜在的原料作用[5-9]。张建军[10]用甲醛对木质素磺酸盐进行改性,发现改性后的羟甲基化木质素磺酸盐在室温下对基浆有增粘作用,高温老化后有降粘、降滤失的效果;胺化木质素可以有效改善油田污泥的松散性,提高油田污泥的吸水率[11]。陈[12]以木质素磺酸盐、甲醛和伯胺/仲胺为原料,制备了一系列木质素磺酸盐Mannich碱钻井液处理剂,结果表明这些化合物在水基钻井液中具有增黏、降滤失、耐高温等作用。目前工业木质素中仍含有颜色较深的半纤维素、无机盐、低聚糖等杂质,这些杂质可能会对工业木质素基钻井液的性能产生较大影响。
抽象的心力衰竭(HF)和心房颤动(AF)是两个心血管(CV)实体,影响了全球数百万个个人,并且其患病率转化为对医疗保健系统的重大影响。这两者份额产生了重要的临床相互关系的常见病理生理途径,因为HF和AF的共存与预后和治疗较差有关。肾素 - 血管紧张素 - 醛固酮系统(RAAS)是血压(BP)对照的关键机制,被证明与两种情况的发病机理有关,导致其进一步的共存。成功控制BP对于HF的管理至关重要,这对于预防心律不齐的底物至关重要,而RAAS拮抗剂可能也可能影响新发行的AF的发展。有许多研究评估了RAAS封锁在AF/HF人群中的有效性,尽管结果可比或适度的结果,但有一个公认的建议,即RAAS阻滞剂可能有助于降低HF,CV事件和AF的复发,以及它们在新的AF AF PREPHAF PREPHASLAXIS中的潜在有效作用。根据证据,血管紧张素受体阻滞剂在该方向上更有效,然后是血管紧张素转化酶抑制剂,而醛固酮拮抗剂的数据并不令人鼓舞,但确实具有重要的CV疾病改性剂的潜力,无论其对BP的影响如何。(Cardiol J)关键词:肾素 - 血管紧张素 - 醛固酮系统(RAAS)阻滞剂,心房颤动,心力衰竭,血管紧张素受体受体阻滞剂(ARB),血管紧张素转化酶抑制剂(ACEIS),醛固酮(AAS)厌食症(AAS)
1. 引言 近年来,由于钙钛矿太阳能电池成本低、效率高、制备简单等特点,吸引了众多研究人员的关注。自从 2009 年 Miyasaka 等人首次报道以来,钙钛矿太阳能电池 (PSC) 技术已经从 3.8% 提升至 25% 左右 [1,2]。基本的钙钛矿太阳能电池由透明导电层(例如氟掺杂氧化锡 (FTO) 或铟掺杂氧化锡 (ITO)、电子传输层、光敏钙钛矿层、空穴传输层以及金属电极)组成。由于电子传输层适用于所有层,因此它对于 PSC 的高效率起着重要作用。TiO 2 是最常用的电子传输层之一,因为它具有多种制备方法,例如旋涂、喷涂、溅射等 [3–5]。除了制备技术之外,TiO 2 结构还存在一些问题,例如氧空位和非化学计量缺陷,尤其是位于 TiO 2 表面的缺陷 [6,7]。这些缺陷阻碍电子流动,导致钙钛矿太阳能电池性能不佳。一些研究人员报道了一些不同的材料如 SnO 2 、 ZnO、CdS 和 WOx 代替 TiO 2 作为电子传输层 [8–11]。尽管 CdS 作为电子传输层还远远不能令人满意,但它可能是改性和钝化 TiO 2 表面的优异界面材料。最近,Hwang 等人报道 CdS 作为介孔 TiO 2 层的改性材料,可提高钙钛矿太阳能电池的稳定性 [12]。Zhao 等人使用 CdS 作为前体溶液的添加剂,观察到复合显著减少 [13]。Dong 等人使用 CdS 作为电子传输层,观察到 PSC 的效率为 16.5% [14]。Wessendorf 等人通过使用 CdS 作为电子传输层,观察到磁滞减小 [15]。Cd 扩散到钙钛矿层导致晶粒尺寸增加,从而提高效率 [16]。Mohamadkhania 等人使用 SnO 2 表面上的 CdS 作为界面改性剂,观察到磁滞减小和效率提高 [17]。Ma 等人表明,在 TiO 2 表面化学沉积 CdS 可将效率从 10.31% 提高到 14.26% [18]。
摘要:目前,复合材料在工程和技术的各个方面都发挥着重要作用,其应用范围不断扩大。最近,人们更加关注天然填料,因为它们适合作为热塑性基质中的增强材料,从而改善这些聚合物的机械性能。生物填料因其成本低、强度高、无毒、可生物降解和易得而得到使用。目前,咖啡渣 (SCG) 作为天然填料越来越受到关注,因为每天都会产生大量的 SCG(咖啡加工产生的食品废料)。这项研究使我们能够确定具有已知技术和工艺参数的活性污泥微生物对含有咖啡渣填料的复合材料机械性能的长期影响。配件由用作基质的高密度聚乙烯 (PE-HD) 和用作改性剂的基于咖啡渣 (SCG) 的填料组成。已确定复合材料的组成及其在生物反应器中的停留时间直接影响接触角值。接触角值的变化与测试材料上生物膜的形成有关。在生物反应器中测试的所有样品的接触角都有所增加,样品 A (PE-HD) 的最低值约为 76.4 度,其余含有咖啡渣填充物的复合材料样品的接触角较高,约为 90 度。研究证实,复合材料中咖啡渣的比例增加会导致微生物的多样性和丰富度增加。在生物反应器中暴露一年多后,含有 40% 咖啡渣的复合材料的微生物数量最多,多样性也最强,而含有 30% SCG 的复合材料位居第二。纤毛虫(Ciliata),尤其是属于 Epistylis 属的固着纤毛虫,是活性污泥和生物反应器中样品浸入生物膜后观察到的最常见和数量最多的微生物群。所进行的研究证实,使用聚合物复合材料模塑件和废咖啡渣形式的填料作为载体可以有效增加生物反应器中的微生物种群。
缩略语 缩略语 含义 AASHTO 美国州公路与运输官员协会 AB 骨料基层 ACI 美国混凝土协会 ADL 空中沉积铅 AISC 美国钢结构协会 AISI 美国钢铁协会 AMA 考古监测区 ANSI 美国国家标准协会 APCD 空气污染控制区 API 美国石油协会 AREMA 美国铁路工程与养护协会 AQMD 空气质量管理区 AS 骨料底基层 ASME 美国机械工程师协会 ASQ 美国质量协会 ATPB 沥青处理透水基层 ATS 主动处理系统 AWG 美国线规 AWPA 美国木材保护协会 AWS a 美国焊接学会 AWWA 美国水务协会 AWIS 自动化工作区信息系统 BBS 电池备用系统 BNSF 伯灵顿北方圣达菲铁路 Cal/OSHA 加州职业安全与健康管理局 CBC 加州建筑规范 CDPH 加州公共卫生部 CIDH 钻孔浇铸 CIH 注册工业卫生师 CIP 现场浇铸 CISS 钢壳浇铸CJP 完全接缝渗透 CMU 混凝土砌体单元 CPM 关键路径法 CPL 复合塑料木材 CRCP 连续钢筋混凝土路面 CRM 碎橡胶改性剂 CSL 跨孔声波测井 CSS 水泥稳定土 CTB 水泥处理基层 CTPB 水泥处理透水基层 CVN 夏比 V 型缺口 CWI AWS 认证焊接检验师 DBE 弱势企业 DRA 争议解决顾问 DRB 争议解决委员会 DTSC 有毒物质控制部 DVBE 伤残退伍军人企业 ECTC 侵蚀控制技术委员会 EIA/ECIA 电子工业联盟/电子元件行业协会 ELAP 环境实验室认可计划 ESA 环境敏感区 ETL 电气测试实验室 f 下标 c 使用荷载下混凝土中的极端纤维压缩应力
6。Baizabal-Carvallo JF,帕金森主义Jankovicj。额颞痴呆中的运动和遗传学的动荡和遗传学。nat Rev Neurol。2016; 12:175-185。 7。 Lomen-Hoerth C,Anderson T,Miller B. 杏仁性的侧面硬化症和额颞痴呆的重叠。 神经病学。 2002; 59:1077-1079。 8。 Dubois B,Feldman HH,Jacova C等。 促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。 柳叶刀神经。 2014; 13:614-629。 9。 Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2016; 12:175-185。7。Lomen-Hoerth C,Anderson T,Miller B.杏仁性的侧面硬化症和额颞痴呆的重叠。神经病学。2002; 59:1077-1079。 8。 Dubois B,Feldman HH,Jacova C等。 促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。 柳叶刀神经。 2014; 13:614-629。 9。 Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2002; 59:1077-1079。8。Dubois B,Feldman HH,Jacova C等。促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。柳叶刀神经。2014; 13:614-629。9。Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。Jack CR,Bennett DA,Blennow K等。NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。阿尔茨海默氏症痴呆症。2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2018; 14:535-562。10。Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。nat Rev Neurol。2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2013; 9:241-242。11。Rademakers R,Neumann M,Mackenzie IR。了解额颞痴呆的分子基础的进步。nat Rev Neurol。2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2012; 8:423-434。12。Moore KM,Nicholas J,Grossman M等。症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。柳叶刀神经。2020; 19:145-156。13。Premi E,Grassi M,Van Swieten J等。认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。大脑。 2017; 140:1784-1791。大脑。2017; 140:1784-1791。14。Rohrer JD,Nicholas JM,Cash DM等。在遗传额颞痴呆倡议(GENFI)研究中,遗传额颞痴呆症的症状性认知和神经解剖学变化:横断面分析。柳叶刀神经。2015; 14:253-262。 15。 STACKARONI AM,COBIGO Y,GOH S-EM等。 个性化的动物分数可以预测家族性额颞叶变性中的痴呆发作。 阿尔茨海默氏症的痴呆症。 2020; 16:37-48。 16。 Pottier C,Zhou X,Perkerson III RB等。 额颞Lobar变性和GRN突变患者的疾病风险和年龄的潜在遗传改性剂:全基因组关联研究。 柳叶刀神经。 2018; 17:548-558。 17。 Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。2015; 14:253-262。15。STACKARONI AM,COBIGO Y,GOH S-EM等。个性化的动物分数可以预测家族性额颞叶变性中的痴呆发作。阿尔茨海默氏症的痴呆症。2020; 16:37-48。16。Pottier C,Zhou X,Perkerson III RB等。额颞Lobar变性和GRN突变患者的疾病风险和年龄的潜在遗传改性剂:全基因组关联研究。柳叶刀神经。2018; 17:548-558。 17。 Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。2018; 17:548-558。17。Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。j阿尔茨海默氏症。2021:1-16。18。Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ibanez A,Yokoyama JS,Possin KL等。多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。前神经。2021; 12:1-16。19。Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Parra MA,Baez S,SedeñoL等。拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。阿尔茨海默氏症的痴呆症。2021; 17:295-313。20。Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ryan B,Baker A,Ilse C等。诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。21。n Z Med J。2018; 131:88-91。 Mackenzie IR,Neumann M.皮层下TDP-43病理学验证皮质FTLD-TDP亚型,并展示了C9orf72突变病例的独特方面。 acta neuropathol。 2020; 139:83-98。 22。 Jones DT,Knopman DS,Graff-Radford J等。 在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。 神经病学。 2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 131:88-91。Mackenzie IR,Neumann M.皮层下TDP-43病理学验证皮质FTLD-TDP亚型,并展示了C9orf72突变病例的独特方面。acta neuropathol。2020; 139:83-98。22。Jones DT,Knopman DS,Graff-Radford J等。 在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。 神经病学。 2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Jones DT,Knopman DS,Graff-Radford J等。在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。神经病学。2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 90:E947-54。23。Bevan-Jones RW,Cope TE,Jones SP等。[18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Ann Clin Transl Neurol。2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 5:1292-1296。24。Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Karikari T,Pascoal T,Ashton N等。等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。柳叶刀神经。2020。在印刷中。25。Janelidze S,Mattsson N,Palmqvist S等。血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,