金纳米棒(Aunrs)由于表面等离子体共振的独特特征,最近在感应和检测应用领域受到了极大的关注。Aunrs的表面修饰是有效利用其特性的必要途径。在本文中,我们既专注于证明Aunrs表面功能化方法的最新进展,又要证明它们使用各种技术来改善感应性能。讨论的主要表面修饰方法包括配体交换,并有助于硫醇基团,层组装方法以及具有所需表面和形态的无机材料。涵盖的技术随后可用于使用这些功能化的aunr,包括色素感应,折射率感测和表面增强拉曼cacttrater的感应。最后,考虑了改善表面修饰的未来发展的前景,以改善感应性能。
为了开发智能和可持续生物材料的复杂应用,我们的工作重点是纳米纤维素的表面改性。纳米纤维素可以进行改性以改善其表面特性,使其适用于生物医药、包装、纺织和水处理等行业的各种用途。已经讨论了多种物理和化学表面改性方法,包括机械处理、高压均质化和化学功能化。该研究还强调了用于检查表面改性纳米纤维素的不同表征方法的结果。尽管纳米纤维素具有潜力,但该综述解决了将其整合到许多应用中的困难,包括制造规模扩大、标准化和毒性问题。本文的结论强调需要继续研究和开发基于纳米纤维素的材料,以克服这些障碍并为一系列社会问题提供长期解决方案。
由于锌资源丰富、成本低、安全性高,可充电锌基电池 (ZIB) 在大规模储能行业引起了广泛关注。然而,ZIB 的电化学性能仍需进一步提高以满足日益增长的储能需求。本文采用水热法制备了氧化石墨烯 (GO) 修饰的 MnO 2 复合电极 (MnO 2 -GO/GF),并以聚丙烯酰胺 (PAM) 为准固体电解质组装成柔性锌基电池。所提出的电池表现出优异的充放电时间超过 13,200 秒,并且在 2,000 次充放电循环后保持率为 100%。除了良好的抗弯曲变形能力外,柔性准固态 Zn//PAM//MnO 2 -GO 电池在 10 mA ⋅ cm − 2 时表现出优异的电池容量 1250.4 (0.1 mAh ⋅ m − 2 ),经过 5,000 次循环后仍具有 91.6% 的稳定性。结果表明,所提出的 MnO 2 -GO/GF 电极具有优异的电化学性能和稳定性,在由 ZIB 供电的下一代柔性可穿戴设备中具有巨大潜力。
© 2023 作者。这是一篇开放获取的文章,根据 Creative Commons 署名许可条款发布,允许以任何媒介或格式不受限制地使用、发布和复制,前提是正确引用原始作品。
在肿瘤微环境中,免疫抑制调节细胞(TREG)的有效耗竭而不触发全身自身免疫性是癌症免疫疗法的重要策略。改性疫苗Ankara(MVA)是一种高度减弱的非复制疫苗病毒,具有悠久的人类使用史。在这里,我们报告了免疫激活重组MVA(RMVA,MVAδE5R-FLT3L-OX40L),其vacinia e5r基因的缺失(编码DNA传感器cyclic cyclice cgas,cgas,cgas的抑制剂),cgas和cgas的抑制剂,cgas和表达3个抑制剂) OX40L。肿瘤内(IT)RMVA(MVAδE5R-FLT3L-OX40L)产生有效的抗肿瘤免疫力,取决于CD8 + T细胞,CGAS/STING介导的介导的细胞溶质性DNA传感途径和I型I IFN信号。值得注意的是,它通过OX40L/OX40的相互作用和IFNAR信号传导来耗尽OX40 HI调节T细胞OX40 HI调节T细胞。用RMVA处理的肿瘤的单细胞RNA-SEQ分析显示OX40 HI CCR8 HI tregs的耗竭以及IFN反应性Tregs的膨胀。综上所述,我们的研究提供了通过免疫激活RMVA耗尽和重编程的肿瘤内Treg的概念证明。
与免疫检查点抑制剂(ICI)治疗相关的抽象免疫相关不良事件(IRAE)在其临床表现中可能有很大差异,包括自然史,治疗结果和模式。由于缺乏常见或始终应用的术语,临床指南在IRAE管理中的应用可能是挑战性的。此外,鉴于临床经验的越来越多和有关伊拉斯的数据,人们对异质的自然历史,对治疗的反应以及这些毒性的模式有了更大的欣赏,目前尚未反映在IRAE指南中。此外,没有前瞻性试验数据可以告知管理伊拉斯的不同演示。认识到需要统一的术语对自然史,对治疗的反应和伊拉斯的模式,癌症免疫疗法协会(SITC)召集了一个共识小组,由学术医学,工业和监管机构的领先国际专家组成。使用修改后的Delphi共识过程,专家小组开发了用于文献中使用的IRAE术语的临床定义,包括与IRAE自然史有关的术语(即,重新发育,慢性活跃,慢性活动,慢性病,延迟/晚期发作),对治疗的响应(IE,类固醇固醇均反应均反应,固醇,固醇依赖性依赖性依赖性),IRA和IRA和IRA,IEE,IE IEE,IE IEE,IE IEE,IE。SITC开发了这些定义,以支持采用IRAES的标准化词汇,这将对IRAE临床实践指南的统一应用有影响,并实现未来的IRAE临床试验。
摘要:我们研究了电致多气体改性 (EIMGM) 持续时间对印刷行业中使用的 PET 和 LDPE 聚合物基材的附着力和耐磨性的影响。研究发现,EIMGM 使 LDPE 的极性成分和完全自由表面能从 26 增加到 57 mJ/m 2,使 PET 的完全自由表面能从 37 增加到 67 mJ/m 2(由于材料表面形成了含氧基团)。尽管改性 LDPE 的纹理和形态异质性程度与初始状态相比增加了两倍以上,但它仍然不适合用作挤出 3D 打印的基材。然而,对于 PET,等离子体化学改性导致细丝对其表面的附着力显著增加(约 5 倍)(由于表面层的化学和形态转变),从而允许使用 FFF 技术在改性 PET 基材上进行增材原型制作。
我们提供了一种简单而直观的理论,可以解释分子与光腔的耦合如何通过利用轻质 - 强度相互作用的固有量子行为来改变地面态化学反应性。使用最近开发的极化Fock状态代表,我们证明,由于具有偏振液体的重叠的糖尿病电子耦合的缩放,因此实现了地面电势的变化。我们的理论预测,对于质子转移模型系统,当腔频率在电子激发范围内时,可以通过光物质相互作用来修饰基态屏障高度。我们的简单理论解释了一些最近发现相同效果的计算研究。我们也表明,在光和物质的深厚耦合极限下,极化的地面和第一个激发的特征态成为Mulliken-Hush的绝热状态,后者是偶极子操作员的本征态。这项工作提供了一个简单但功能强大的观念框架,以了解分子和腔之间的强耦合如何修改基态重复性。
其中,葡萄糖的便携式传感器需求量很高,因为糖尿病患者需要在日常生活中自加检查葡萄糖水平。2特别是,糖尿病并发症可能是由于血浆葡萄糖水平的波动或恒定的高葡萄糖水平引起的,3意味着准确的葡萄糖监测方法至关重要。朝着人类血液样品中葡萄糖进行准确检测,迄今已广泛开发酶传感器。基于检测酶的催化反应的原则(例如,葡萄糖氧化酶)具有很高的选择性和敏感性,而对酶电极的干扰影响可以通过电动活性物质的氧化来诱导(例如,抗坏血酸)在人类血液样本中。4此外,在实际的感应环境中,生物识别材料对物理和/或化学刺激的不稳定性仍然是一个关注点。2认为感应系统的鲁棒性,人造受体5
日本东京癌症研究所胃肠病学中心,胃肠病学中心,日本东京,日本东京B医学肿瘤学系,日本utsunomiya,utsunomiya,utsunomiya,utsunomiya,gastroenterology,Yokohology and Yokoholoy and Yokoholiy and Yokohoy and cantobiriary and Pancrial and cantobil and tokrial,日本E肝素和胰腺肿瘤学部,日本喀西瓦国家癌症中心医院东部,喀西瓦州F胃肠病学系,卡纳泽大学医院,卡纳泽大学医院,卡纳泽,日本卡纳泽,日本奇巴癌临床研究中心,日本奇巴,日本日本日本临床中心/地区临床中心/地区的日本临床中心,日本癌症中心日本Yokohama,Yokohama大学医学中心,Kyorin大学医学系,东京,日本东京医学院,K k胃肠病学系,日本Nagoya Aichi Cancer Center医院,日本纳戈亚氏菌,Kansai医科大学,Osaka,Osaka,Osaka,Osaka,日本北部医院,Hokkaido Hospital,sapporok,Sapporok,Sapporok,Saperok Onsok,日本Shizuoka的中心o胃肠病学和肝病学系,日本大阪市医学院P型医学和生物学科学系福克武库卡,福克武科学系福库卡福克库卡州福克索癌症中心,福克索,日本医学院研究生院日本东京癌症研究所胃肠病学中心,胃肠病学中心,日本东京,日本东京B医学肿瘤学系,日本utsunomiya,utsunomiya,utsunomiya,utsunomiya,gastroenterology,Yokohology and Yokoholoy and Yokoholiy and Yokohoy and cantobiriary and Pancrial and cantobil and tokrial,日本E肝素和胰腺肿瘤学部,日本喀西瓦国家癌症中心医院东部,喀西瓦州F胃肠病学系,卡纳泽大学医院,卡纳泽大学医院,卡纳泽,日本卡纳泽,日本奇巴癌临床研究中心,日本奇巴,日本日本日本临床中心/地区临床中心/地区的日本临床中心,日本癌症中心日本Yokohama,Yokohama大学医学中心,Kyorin大学医学系,东京,日本东京医学院,K k胃肠病学系,日本Nagoya Aichi Cancer Center医院,日本纳戈亚氏菌,Kansai医科大学,Osaka,Osaka,Osaka,Osaka,日本北部医院,Hokkaido Hospital,sapporok,Sapporok,Sapporok,Saperok Onsok,日本Shizuoka的中心o胃肠病学和肝病学系,日本大阪市医学院P型医学和生物学科学系福克武库卡,福克武科学系福库卡福克库卡州福克索癌症中心,福克索,日本医学院研究生院