咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
尽管靶向疗法已经发展起来,传统的合成的改善病情的抗风湿药物 (csDMARDs) 仍然是治疗类风湿性关节炎 (RA) 的基石。我们对治疗建议和有关类风湿性关节炎治疗新见解的论文进行了文献检索。甲氨蝶呤被认为是“锚定药物”,因为它作为单一疗法以及与其他常规和靶向药物联合使用时都具有很高的疗效。来氟米特和柳氮磺吡啶是可靠的替代品,而 (羟基) 氯喹主要与其他 csDMARD 联合使用。鼓励在所有治疗阶段使用它们——与靶向药物联合使用,以及与其他 csDMARD 联合使用。鉴于有证据证明 csDMARD 联合使用与靶向药物与 csDMARD 联合使用相比具有 (几乎) 相同的疗效和安全性,因此在低收入环境中联合使用不同的 csDMARD 尤其具有吸引力。本综述的目的是提供对每种 csDMARD 的药理学及其在治疗算法中的地位的临床导向见解。