一个典型的电离室由两个电荷板和一个放射源(通常为Americium 241)组成,用于电离板之间的空气。(见图1)放射性源散发出与空气分子一起散发并移出电子的颗粒。由于分子损失电子,它们会变成正带的离子。随着其他分子获得电子的产生,它们变成负电荷的离子。创建了相等数量的正离子和负离子。带正电的离子被带负电荷的电板吸引,而带负电荷的离子被带带正电荷的板吸引。(见图2.)这会产生一个小电离电流,可以通过连接到板的电路(检测器中的“正常”条件)来测量。
切尔诺贝利核电站泄漏和巴西戈亚尼亚放射源泄漏导致污染后,日本开发并实施了用于调查和净化大面积污染以及管理随后的放射性废物的技术。这些民用放射性物质泄漏的例子提供了一些城市放射性修复的首批例子。2011 年福岛第一核电站泄漏放射性铯同位素 (Cs 134 和 Cs-137) 后,日本最近开发和演示了许多新兴技术。日本原子能机构 (JAEA)、日本环境省 (MOE) 和国家环境科学研究所 (NIES) 等日本政府机构以及学术机构和行业报告的技术信息已被总结,并与美国最近开发、部署和可用的技术进行了比较。
• 机械 - 移动链环、杆、链条、皮带、滑块、轮子、轴、门、冲压机、叶片、活塞、机器人运动等。• 气动/真空 - 由高于环境气压或真空条件下的加压空气或气体操作。• 电气 - 潜在危险电压(> 50 伏)、危险静电位或电池或电容器中储存的危险能量。• 液压 - 高压流体、高温流体• 电离辐射 - 包括 X 射线、伽马射线、阿尔法和贝塔粒子以及放射源。• 非电离辐射 - 包括射频 (RF)、紫外线、激光和磁场• 热 - 非常热或非常冷的温度(例如,< 32F/0C 或 > 140F/60C)• 气体和化学品 - 反应性、腐蚀性、易燃性、放射性、毒物、氧化剂材料或其他危险生产材料 (HPM)
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
前言 关于健康建筑说明 健康建筑说明套件 健康建筑说明结构 DH 地产和设施知识系列中的其他资源 健康技术备忘录 健康技术备忘录建筑组件系列 活动数据库 (ADB) 如何获取出版物 执行摘要 自健康建筑说明 54 (2006) 以来的主要变化 1 政策背景 1 背景 环境质量 提供同性住宿 2 诊断 2 3 治疗概述 3 4 化疗 4 鞘内化疗 5 放射治疗 5 放射治疗工作人员组 远程治疗 直线加速器 (linacs) 图像引导放射治疗 (IGRT) 调强放射治疗 (IMRT) 旋转 IMRT 立体定向放射治疗/放射外科 近距离放射治疗 临时植入物 永久植入物 非密封放射源 6 外科肿瘤学 9 7 急诊护理 10 8 住院护理 11 重症监护设施 9 化疗科 12 规划和设计注意事项 儿童设施 临床试验 功能关系 内部功能关系 与其他部门的关系 治疗套件 套件的功能
戈德史密斯借用埃尔利希的话来说,靶向放射性核素治疗是一颗魔弹,能够将能量传送到特定目标并摧毁它 ( 1 )。许多新型放射性示踪剂不断涌现,可用于诊断和治疗。接受放射性药物治疗 (RPT) 的患者会成为放射源,需要为护理人员和公众制定安全协议。在意大利,患者可能会住院,直到放射性剂量衰减到安全水平,例如长期实施的 131 I 治疗 ( 2 )。人们通常对新兴放射性核素采取类似的预防措施,从而应用与 131 I 相同的习惯。相反,应根据每个案例进行个体评估,以将辐射暴露保持在尽可能低的合理水平,平衡成本效益。这对于 [ 177 Lu]Lu-PSMA-RPT 来说是必不可少的,因为出院规定有所不同:一些国家允许门诊给药,而其他国家则要求住院 ( 3 )。这种异质性影响了这种有前途的癌症治疗方法在世界范围内的传播。本社论评估了 [ 177 Lu]Lu-PSMA 给药作为前列腺癌门诊程序的可行性,分析了安全性、优点和缺点。
摘要 - 由于韩国核工业使用放射源的扩大和核反应堆退役等环境变化,人们担心辐射工作人员发生内部暴露情况的频率增加。本文旨在开发一种基于人工智能的内部剂量测定系统,该系统在目前的商用规范中不可能实现,该系统能够在放射紧急情况下快速估计和处理大量测量信息。为了定义使用人工智能的评估模型,根据 ICRP、OIR 和 IDEAS 的建议,构建了一个用于生成适用于人工神经网络学习的摄入场景和输入值的数据库的自动系统。人工神经网络分为两种模型,即已知摄入时间和未知摄入时间的情况。并且,已经构建了这些模型的架构,分别用于评估承诺有效剂量以及承诺有效剂量和摄入时间。两个模型的损失函数已经收敛,并且没有发生过度拟合,并且已经实现了基于人工智能的内部剂量测定系统的有效性。并且,还利用人工神经网络的学习结果对内部剂量测定程序的有效性进行了测试。R2 分数的准确度约为 0.998,因此基于人工智能的系统可以可靠地进行内部剂量测定。
摘要 — 高能电子与物质相互作用产生的辐射簇射包括能量分布峰值为 MeV 级的中子,这些中子是通过光核反应产生的,可以测量电子设备中中子诱导的单粒子效应 (SEE)。在这项工作中,我们研究了一种装置,其中欧洲核子研究中心 [Centre Européen pour la Recherche Nucléaire (CERN)] 的 CLEAR 加速器的 200 MeV 电子束被引导到铝靶上以产生具有大中子分量的辐射场。通过测量特性良好的静态随机存取存储器 (SRAM) 中的单粒子翻转 (SEU) 和闩锁率以及被动式无线电光致发光 (RPL) 剂量计中的总电离剂量 (TID),并将结果与 FLUKA 模拟的预测进行比较,对由此产生的环境进行了分析。我们发现,用铅制成的横向屏蔽可保护 SRAM 免受过高的 TID 率影响,从而为 SEU 测量提供最佳配置,尤其是在对 MeV 级中子高度敏感的 SRAM 中。相对于基于散裂靶或放射源的标准中子设施,此设置提供了一种有趣的补充中子源。
摘要 使用液态氙作为靶材的探测器被广泛应用于稀有事件搜索。关于相互作用粒子的结论依赖于对沉积能量的精确重建,而这需要借助放射源对探测器的能量标度进行校准。然而,微观校准,即将激发量子数转换为沉积能量,也需要充分了解在液态氙中产生单个闪烁光子或电离电子所需的能量。这些激发量子的总和与靶材中沉积的能量成正比。比例常数是平均激发能量,通常称为 W 值。在这里,我们展示了在带有混合(光电倍增管和硅光电倍增管)光电传感器配置的小型双相氙时间投影室中通过电子反冲相互作用对 W 值进行测量的方法。我们的结果基于在 O (1 − 10 keV) 处使用内部 37 Ar 和 83m Kr 源以及单电子事件进行的校准。我们得到的值为 W = 11 . 5 + 0 . 2 − 0 . 3 ( syst .) eV,统计不确定性可忽略不计,低于之前在这些能量下测量的值。如果得到进一步证实,我们的结果将与模拟液态氙探测器对粒子相互作用的绝对响应相关。
在印度,有关建立和运行辐射源和装置的活动须按照《1962 年原子能法》的规定进行。为确保公众和职业工作者的安全,原子能管理委员会负责制定安全标准以及为此类活动制订规章制度。因此,委员会制定了安全标准、安全规范和相关的安全指南和安全手册来涵盖这些设施的监管方面。印度的辐射设施涵盖各种各样的放射源和辐射产生设备,涵盖从低危险到高危险潜在源和活动。为确保辐射工作者和广大公众的安全,这些设施必须遵守相关原子能管理委员会安全规范和标准中规定的设计和操作要求。此外,还要求对工作者在工作过程中进行人员监护。从事不同类型辐射设施的辐射工作人员的工作概况差异很大,这取决于辐射区的工作类型,即工作时间、辐射源的活动/强度、处理辐射源的距离。因此,职业暴露监测可以通过确定或估计辐射剂量来进行,具体取决于与实践类型、处理的辐射源/活动和工作概况等各种因素相关的潜在暴露。本文件提供了辐射设施中适当的人员监测的实践建议,其中考虑到操作安全方面、危险潜力和参与实践的辐射工作人员的工作概况。它有望帮助放射安全官员就人员监测、辐射工作人员培训和剂量记录维护向持牌人提供建议。为了制定这些指导方针,AERB 利用了其在辐射设施进行的多次监管检查和审查中获得的监管见解,以及来自公用事业、机构的放射安全官员和其他人员的反馈。 AERB 感谢 NODRS 团队、RP& AD、BARC 在制定本文档过程中提供数据和观点的支持。