采用JENWAY公司生产的UV/Vis 6850分光光度计对化合物的结构进行了定性研究。灵敏度高,二元分光光度法操作范围为190~1100nm,装置的光放电率为0.1nm。以汞和白炽灯为激发源。研究在室温下进行,以三氯乙烷为溶剂。将所得溶液和标准具倒入1cm矩形石英管中,并插入紫外分光光度计的适当窗口前,获取样品的光谱。在S3样品的紫外光谱中,在215nm处观察到咪唑环的两个吸收带中的一个,强度较小。低强度与连接咪唑的基团有关。因此,该吸收带属于核电子系统的π-π*跃迁。在 330 nm 处记录了氮未分割电子对的 n-π 跃迁的第二条吸收谱带,强度较高。氯与芳环的连接导致舟铬滑动,这在第二条吸收谱带上基本得到显示。C 6 H 4 Cl 基团在 200 和 235 nm 处,在 260、345 和 360 nm 波长处测定了属于菲基团的吸收谱带。在可见光区(535 nm)观察到了二苯基重氮基团的吸收谱带。影响滑动的因素之一是溶剂是多芳基化合物。
近年来,部署的电池储能系统 (BESS) 数量稳步增加。对于新投入使用的系统,锂离子电池因其成本降低、效率高和循环寿命长而成为最常用的技术。由于电池内部存在多种老化机制,锂离子电池容易退化。退化的影响,特别是容量降低、电阻增加和安全隐患,会对 BESS 的经济性产生重大影响。受充电状态、充放电率、循环次数和温度等老化应力因素的影响,退化的程度直接受操作条件的影响。可以找到大量侧重于 BESS 老化感知操作的文献。在这篇评论中,我们概述了相关的老化机制以及退化建模方法,并从这些主题的最新技术中推导出 BESS 操作的关键方面。随后,我们回顾并分类了旨在通过在操作策略中考虑电池退化效应来延长 BESS 寿命的方法。文献表明,使用经验或半经验退化模型以及混合整数线性规划的精确解法特别常见,定义目标函数的老化成本的方法也是如此。此外,通过模拟案例研究,我们确定了影响自耗增加、峰值削减和频率遏制储备等关键应用退化的最相关压力因素。
在当今迅速发展的技术世界中,电池已成为生物医学行业挽救生命设备的关键组成部分。从心脏起搏器到植入的心脏逆转表纤维(ICD),电池在确保这些设备有效,可靠,安全地运行方面发挥了关键作用。这些电池的区别是它们的高功率和能量密度,确保了稳健的性能,并坚持坚定不移的可靠性和安全标准来保护患者的福祉。它们的适应性和灵活性可以无缝整合到多种医疗应用中,并通过可预测的放电电压,低自我放电率,长期使用寿命和关键的寿命终止指示机制进行补充。在心律管理的领域内,电池赋予了关键设备,例如起搏器,无铅起搏器,ICD,心脏重新同步治疗(CRT)和心脏可植入的电子设备(CIEDS),以确保维持最佳心脏功能。本文研究了医疗行业中使用的各种电池类型,特别关注以锂为基的电池的流行,以其可靠性和高能量密度而闻名。此外,这项贡献为技术进步和对创新医疗解决方案的不断升级的需求所驱动的蓬勃发展的生物医学电池市场提供了见解。这篇评论还强调了现代医疗保健中电池不可或缺的性质,催化了开创性的医疗创新并增强了患者护理。
在当今迅速发展的技术世界中,电池已成为生物医学行业挽救生命设备的关键组成部分。从心脏起搏器到植入的心脏逆转表纤维(ICD),电池在确保这些设备有效,可靠,安全地运行方面发挥了关键作用。这些电池的区别是它们的高功率和能量密度,确保了稳健的性能,并坚持坚定不移的可靠性和安全标准来保护患者的福祉。它们的适应性和灵活性可以无缝整合到多种医疗应用中,并通过可预测的放电电压,低自我放电率,长期使用寿命和关键的寿命终止指示机制进行补充。在心律管理的领域内,电池赋予了关键设备,例如起搏器,无铅起搏器,ICD,心脏重新同步治疗(CRT)和心脏可植入的电子设备(CIEDS),以确保维持最佳心脏功能。本文研究了医疗行业中使用的各种电池类型,特别关注以锂为基的电池的流行,以其可靠性和高能量密度而闻名。此外,这项贡献为技术进步和对创新医疗解决方案的不断升级的需求所驱动的蓬勃发展的生物医学电池市场提供了见解。这篇评论还强调了现代医疗保健中电池不可或缺的性质,催化了开创性的医疗创新并增强了患者护理。
锂离子细胞由于多种细胞内衰老效应而导致降解,这可以显着影响电池能量储能系统(BESS)的经济性。由于降解率取决于外部应力因素,例如电荷,电荷/放电率和周期深度,因此可以通过操作策略直接影响它。在此贡献中,我们提出了一个模型预测控制(MPC)框架,用于设计老化的意识操作策略。通过模拟数字双胞胎上的整个BESS寿命,可以基准测试不同的老化意识优化模型,并且可以确定老化成本的最佳价值。在案例研究中,研究了通过套利交易在EPEX现场盘中电力市场上通过套利交易的应用。为此,提出了用于日历的线性化模型和磷酸锂细胞的环状容量损失。结果表明,与基于电池系统的成本选择老化成本相比,使用MPC框架来确定最佳的老化成本可以显着提高BES的寿命盈利能力。此外,与基于能量吞吐量的基于能量吞吐量的老化成本模型相比,使用线性化日历降解模型时,能量套利的生命周期利润可以增加24.9%,使用线性化日历和环状降解模型时,可以增加24.9%。通过检查2019年至2022年的价格数据,该案例研究表明,批发电力市场的价格和价格波动的最新上涨导致可实现的终身利润大幅增加。
摘要 — 现代电网将传统发电机与分布式能源 (DER) 发电机相结合,以应对气候变化和长期能源安全的担忧。由于 DER 的间歇性,必须安装不同类型的储能设备 (ESD),以尽量减少机组投入问题并适应旋转备用电力。ESD 具有操作和资源限制,例如充电和放电率或最大和最小充电状态 (SoC)。本文提出了一个线性规划 (LP) 优化框架,以最大化特定电网特定最佳旋转备用电力的机组投入功率。使用此优化框架,我们还使用 DER 和 ESD 资源约束确定总可调度电力、不可调度电力、旋转备用电力和套利电力。为了描述 ESD 和 DER 约束,本文评估了几个因素:可用性、可调度性、不可调度性、旋转备用和套利因子。这些因素被用作此 LP 优化中的约束,以确定现有 DER 的总最佳备用电力。所提出的优化框架最大化了可调度与不可调度功率的比率,以最小化每个 DER 设定的特定旋转备用功率范围内的机组承诺问题。该优化框架在改进的 IEEE 34 总线配电系统中实施,在十个不同的总线中添加十个 DER 以验证其有效性。索引术语 — 分布式能源资源、机组承诺、运行和非运行备用、配电系统
摘要:本文旨在开发带有模块化电池组的便携式电源,该电池组由太阳能电池板和控制器充电,该电池组可以在诺萨加拉伊(Norzagaray)提供Bulacan的Dumagat Tribe,可访问Bulacan的基本电动需求。使用负载时间表计算他们的需求,并根据PEC第6.09条(太阳能PV Systems)设计系统。通过使用Arduino监测电压水平来评估数据,并使用统计处理来确定充电和放电率的任何显着差异。该系统配备了以下主要组件:逆变器,带电池管理系统(BMS)的12V电池组,整流器电路,便携式太阳能电池板,太阳能充电器控制器和3D打印的外壳。对数据的解释表明,在3天的测试持续时间内,电池的充电率和排放率相当一致。因此,实现了以下目标:确定位于Bulacan Norzagaray的Dumagat Tribe主要前哨区域的能源需求,以开发一种便携式电源系统,以满足上述需求,以衡量该系统通过定量含义和提供频繁的电力和启用型电源的系统在为部落提供能源方面的有效性。提出了以下建议:1)通过使用更高质量(更高容量)的18650电池电池来进一步改善电池组,以延长使用持续时间,2)使用更强大的太阳能电池板,优选比本研究中使用的太阳能更紧凑,而3)可以尝试使用不同类型的电池,例如Li-Po。
摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。
摘要:许多实验都要求在检测和处理神经脑活动时具有较低的延迟,从动作到反应的时间约为几毫秒。本文介绍了一种亚毫秒级检测和通信尖峰活动的设计,该设计由 32 个皮层内微电极阵列检测,利用现场可编程门阵列 (FPGA) 提供的实时处理。该设计嵌入在 Intan Technologies 的商用 RHS 刺激/记录控制器中,该控制器允许记录皮层内信号并执行皮层内微刺激 (ICMS)。尖峰检测器 (SD) 基于平滑非线性能量算子 (SNEO),并包括一种新方法来估计基于 RMS 的独立于放电率的阈值,可以对其进行调整以精细检测单个动作电位 (AP) 和多单位活动 (MUA)。低延迟 SD 与 ICMS 功能相结合,为依赖于神经元活动相关刺激的脑机接口 (BCI) 闭环实验创建了一个强大的工具。该设计还包括:三阶 Butterworth 高通 IIR 滤波器和 Savitzky-Golay 多项式拟合;特权快速 USB 连接,用于将检测到的尖峰传输到主机,以及亚毫秒延迟通用异步接收器-发射器 (UART) 协议通信,用于发送检测和接收 ICMS 触发器。该项目的源代码和说明可以在 GitHub 上找到。
摘要:组织培养物(尤其是脑类器官)的分析需要高度的协调、测量和监控。我们开发了一个自动化研究平台,使独立设备能够实现反馈驱动的细胞培养研究的协作目标。通过物联网 (IoT) 架构统一,我们的方法能够实现各种传感和驱动设备之间的持续通信交互,实现对体外生物实验的精确定时控制。该框架集成了微流体、电生理学和成像设备,以维持大脑皮层类器官并监测其神经元活动。类器官在定制的 3D 打印腔室中培养,这些腔室连接到商用微电极阵列以进行电生理学监测。使用可编程微流体泵实现定期进料。我们开发了计算机视觉液体体积估计方法,可实现高精度的抽吸培养基,并使用反馈来纠正培养基进料/抽吸循环期间微流体灌注的偏差。我们通过对小鼠大脑皮层类器官进行为期 7 天的研究验证了该系统,比较了手动和自动协议。自动化实验样本在整个实验过程中保持了强劲的神经活动,与对照样本相当。自动化系统可以每小时进行一次电生理记录,揭示了神经元放电率的显著时间变化,而这种变化在每天一次的记录中是观察不到的。