20 摘要 21 Al-CO 2 电池是一种非常有前途的锂离子电池替代品,它有潜力提高电池容量和性能,但尚未证明其具有高电位和高容量可充电性。在这项工作中,我们将碘化铝引入以前仅有一次的 Al-CO 2 电池配置中,作为均质氧化还原介质。这使电池能够以 0.05 V 的超低过电位充电,而不会牺牲高放电电位和比容量 27 ,分别为 1.12 V 和 3,557 mAh/g 碳。我们使用铝-27 核磁共振确定电池的放电产物为草酸铝。29 可充电的 Al-CO 2 电池可以作为锂离子电池的廉价、高容量替代能源存储设备,同时捕获和浓缩二氧化碳。 31 32 预告 33 在 Al-CO 2 电池中引入 AlI 3 可增强放电,并能够以超低过电位循环电池。 35 36 正文 37 38 简介 39 缓解温室气体引起的全球变暖的一种策略是将以前基于化石燃料的技术(如汽车)电气化。(1)这一努力取得了一定的成功,这主要归功于锂离子电池技术的发展。然而,锂离子电池的理论上限明显低于化石燃料的能量存储容量,这实际上限制了电气替代品的成功应用。(2,3)需要一种具有更高能量存储容量的新型电池配置,其中包括金属-CO 2 电池。在金属-CO 2 电池中,来自 46
计划为未来的航空和太空旅行提供燃料。3 因此,积极的电极材料研究活动和 LIB 产量的激增导致价格在过去十年中下降了 85%。随着对能源及其存储的需求呈指数级增长,全球储能市场预计在未来十年将增长 4260 亿美元,而全球 LIB 市场已经达到 500 亿美元大关。4 从 LIB 时代开始,它主要依赖于昂贵金属的不间断供应,例如钴、镍、锰、铝、铁、铜和锂。另一方面,基于这些金属的阴极材料现在引起了与原材料可用性、采矿和合成成本、供应链瓶颈、地缘政治局势以及毒性和回收等生命末期问题有关的严重担忧。 5 因此,眼前的挑战不仅在于解决这些问题,而且还要提高现有 LIB 的存储容量、电池电压和耐用性,以满足未来的需求。这带来了更绿色、更可持续的电池的概念,其中包含对环境无害、经济、丰富和更安全的有机电活性材料。本综述重点介绍过去五年来以小分子、金属配合物和有机/金属有机框架 (MOF) 等各种形式应用于 LIB 的有机正极材料的最新研究成果。有机材料由地球上丰富的元素组成,例如 H、C、N、O、S 和 P。除了较低的环境足迹、能源经济合成、成本和回收利用外,有机氧化还原材料最吸引人的特点之一是高结构和性能可调性(图 1)。 6 近年来,开发有机材料的努力主要集中在对含有最常见氧化还原单元(即羰基)的有机分子进行结构改性。 7 这是因为锂离子电池的充电/放电电位、比容量、循环稳定性和循环速率取决于材料的分子结构。对于
实用产品开发。锂离子电池已成为替代镍氢电池的主要候选者,然而,对续航时间更长、充电速度更快、续航里程更远的电动汽车的需求,使得后锂离子电池材料、结构和系统的研究变得多样化[1-3]。一种潜在的、有吸引力的替代品是固态电池;其前提是用固态离子导体取代锂离子电池中常见的有机液体电解质[4,5]。宽电化学窗口、不可燃性以及实现锂金属阳极的潜力是将固态电池推向下一代储能前沿的优势。然而,要与传统的液体电解质竞争,实现高锂离子电导率是一个巨大的挑战。固态离子领域发展迅速,各种能够在中等温度下实现快速锂离子传输的锂离子导体正在实现下一代电化学存储。聚合物、凝胶、熔融盐和陶瓷电解质在集成到实际设备中时各有优势,也面临挑战;然而,硫化物基电解质已成为有力竞争者,其电导率可匹敌甚至超越有机液体电解质 [6]。LGPS、Li 7 P 3 S 11 玻璃陶瓷、银锗石 Li 9.54 Si 1.74 P 1.44 Cl 0.3 是表现出优异 Li + 电导率的电解质例子,尽管在电化学窗口和抵抗锂金属强还原电位的能力方面结果不一[5,7-9]。Sakamoto 等人 [10] 通过拉曼光谱证明了硫代磷酸锂 Li 3 PS 4 在与对称 Li-Li 电池循环后还原形成 Li 2 S 和 Li 3 P 产物,这已通过原位 XPS 实验证实并通过 DFT 计算进行预测 [11,12]。研究表明硫化物电解质还会与高压正极发生反应,形成的薄界面足以降低电池容量和循环能力。为实现该技术,用 LiNbO 3 进行表面改性可以阻碍化学交叉扩散并减少空间电荷层的锂损耗 [13]。高能正极研究对于实现全固态锂电池至关重要。硫作为高能量密度正极的出现是正极、电解质和隔膜技术的产物,旨在实现高倍率下的可逆容量。硫的优点是理论容量高(1675 mAh g -1 ),这平衡了低平均正极放电电位(~2.0 V),从而产生高理论能量密度(~2600 Wh kg -1 )。然而,必须克服重大挑战,例如硫和多硫化物溶解在电解质中,有机电解质的持续分解以及锂金属的树枝状生长。其结果是无法在长时间循环过程中保持容量,而解决方案则是采用精妙的材料设计和工程来封装和保护活性材料。碳、聚合物和隔膜技术在实现高负载和可持续硫正极方面都发挥了至关重要的作用 [14-16]。或者,更换有机液体电解质可以提供一条多方面的途径来解决持续的 SEI 形成和多硫化物溶解问题,因此固态 Li-S 电池有可能拥有出色的循环寿命。事实上,利用固体电解质已显示出无需封装活性材料就能提高容量保持率,这为高负载活性材料以增加能量密度并降低成本铺平了道路 [17-20]。为了实现这样的改进,阐明放电机制将加深对电化学反应的理解,并为进一步改进扩大电池电极所需的设计和工艺提供见解。在这里,我们通过分离碳、固态电解质(非晶态 Li 3 PS 4,LPS)和硫/硫化锂这三种基本成分的反应性,研究了固态硫阴极复合阴极的制备过程如何影响电化学放电。研究人员最近意识到