1部门微生物学的名称,1个组织名称Mgr.Janaki艺术与妇女科学学院,印度钦奈摘要:具有药理学活动的代谢物的重要来源现在是微生物。这是天然产物的重要组成部分,包括抗病毒,抗癌,抗生素和继发代谢物的化学物质。在过去的几十年中,全球寻找新天然产品一直以海洋物种为中心。在新的生物活性生产者中是在海洋环境中发现的放线菌。术语“黑色素”和“黑色素样”已被用来描述棕黑色的色素。已证明它可以保护微生物免受氧化剂,酶裂解,紫外线和肺泡巨噬细胞死亡的影响。尽管黑色素具有广泛的生物技术用途,但对海洋放线菌的意义和独特性知之甚少。从土壤和海洋环境中分离出的放线菌会产生黑色素,这种黑色素是一种抗氧化,抗菌和抗癌特性的色素。这项研究表征了产生黑色素的放线菌,优化培养条件并评估其在药物,农业和环境领域中的潜在应用。索引术语 - 放线菌;抗菌;黑色素;色素沉着;土壤微生物。简介: -
1个心血管和胸腔成像单元,Pitié-Salpêtrière医院,公共援助巴黎公共援助 - 巴黎(APHP),法国巴黎,法国2号,索邦大学2号,Inserm cic-901,ap.hp.hp.sorbonne,ap.hp.sorbonne大学,UMRS1158大学,实验和临床呼吸神经生理学,AP-HP,University Hospital Hospital Group Aphp-Sorbonne University,Pitié-Salpêtrière医院,R3S系(呼吸,呼吸,呼吸道康复,睡眠)以及来自营养的代谢和代谢,Pitié-Salpêtrière医院,公共援助 - 巴黎公共援助 - 巴黎(APHP),法国巴黎,法国,5索邦大学,索邦大学,公共援助医院de Paris,Inserm u974,Inserm u974内科医学和临床免疫学部,Pitiudiun salistri saperparis paris paris paris paris parie paris parie,Paris parie,Paris parie,Paripate paripate,Paripate,Paripate,Paripate paripate,Paripate paripa France, 6 Sorbonne University, Institute Louis of Epidemiology and Public Health (IPLESP), Public Assistance-Hospitals of Paris (APHP), Pitié-Salpêtrière Hospital, Department of Medical Oncology, University Institute of Cancerology, Clip² Galilée, Paris, France, 7 Biomedical Imaging Laboratory, Sorbonne University, Inserm, Institute of Cardiometabolism and Nutrition,巴黎,法国
与没有这种病变的那些相比,缺血性中风后的预后(3),并且它们经历了更大程度的认知障碍(4)。WML可能是由脑小血管疾病引起的,脑白质血液流量减少(5)。目前,WML的原因通常归因于慢性小血管疾病。一些研究发现,脑灌注减少可能会导致双侧缺血和缺氧,从而导致微循环疾病并恶化神经变性(6)。次要皮质损伤会发生,因为白质纤维之间的连接受损(7)。然而,除了包括年龄和高血压在内的危险因素外,视网膜微血管异常的严重程度与lacunar梗死的发生和发展有关(8)和WMLS(9)(如多项研究中)。减少了视网膜微动菌和微化的数量,以及视网膜内层内层厚度的减小,与认知能力受损,灰色和白色质量较低以及损害的白质网络结构显着相关(10)。
抽象的放线菌种类是人类的共生生物。如果发生粘膜损伤,它将成为病原体。大多数情况仅限于面部和颈部。腹部放线菌病(AA)在临床实践中很少遇到。表现是高度可变的,从急性腹部到可疑恶性肿瘤的腹部质量。此病例报告描述了一名年轻,健康的女性接受急性腹部的录取。在手术过程中发现了带孔和弥漫性腹膜炎的坏疽性阑尾炎。进行了腹腔镜阑尾切除术。病理报告描述了丝状生物的阳性聚集体,与放线肌属于属性。在经验抗生素治疗的启动后,患者完全康复。在4年的随访中未发生腹腔内复发。
迄今为止,许多基于培养和基于基因工程的策略、靶向基因操作技术(如启动子工程和 CRISPR 介导的基因编辑)和非靶向方法(如核糖体工程和调节基因的激活/失活)已经使得有效激活隐蔽的 SM-BGC 成为可能 (7,8)。但与上述技术相比,通过共培养微生物来增加次级代谢产物的产生具有简单的优点,因为它不需要事先了解 smBGC 或基因工程工具。共培养复制了生态压力,例如物种间竞争期间的营养缺乏,并导致鉴定出几种完美的生产者和诱导者组合,这些组合可有效促进新型生物活性化合物的合成。
抗生素耐药性的威胁日益增加,凸显了对新型抗生素的需求。海洋放线菌 4 已成为生物活性化合物的有希望的来源。在这项研究中,从海洋沉积物中分离出 22 个菌株,通过形态学鉴定,其中 9 个通过 16S rRNA 6 基因测序确认为放线菌。五种菌株 - 橄榄轮生链霉菌 (T-2)、蓝绿色链霉菌 (T-4)、Nocardiopsis synnemataformans (T-7)、白灰链霉菌 (T-8) 和黑绿链霉菌 8 (T-9) - 表现出显著的抗菌活性。在淀粉酪蛋白肉汤中培养,对其代谢物进行抗菌、抗氧化、抗凝和抗炎活性测试。 T-4 和 T-8 10 表现出显著的抗菌作用,T-8 表现出强大的 DPPH 自由基清除能力(372.09 ± 11.05 11 µg/mL)。T-9 抑制胰蛋白酶(IC 50 435.12 ± 15.88 µg/mL),凝血酶原时间为 12.08 ± 1.46 12 分钟。T-8 增强了红细胞膜稳定性(IC 50 140.08 ± 2.30 µg/mL)。这些发现表明 13 海洋沉积物来源的放线菌具有显著的治疗潜力,值得进一步 14 研究。15
Natural products from Actinobacteria,Hsi commonly known as actinomycetes, have historically provided humans with numerous antibiotics (e.g., streptomycin, gentamicin, and vancomycin) ( Schatz et al., 1944 ; Cooper and Yudis, 1967 ; Rake et al., 1986 ), anticancer agents (e.g., doxorubicin, bleomycin, and Calicheamicins(Shastri等,1971; Maiese等,1989)和Agrochemicals(例如Avermectin和pinosad)(West,1996; Molinari et al。,2010)。应强调,所有认可的抗生素中约有三分之二来自放线菌,主要由链霉菌物种衍生出来,强调了这些微生物的重要性(Barka等,2016)。从放线菌对新天然产物的发现和生物学评估是后基因组时代的无尽领域,主要是由微生物基因组学和合成生物学的进步驱动。了解放线菌天然产物的生物合成不仅阐明了自然如何从小型构件(例如氨基酸和酰基-COA)中构建这些复杂分子,而且还为提高工业发展的产量提供了基础。一些天然产品具有前所未有的结构支架和令人印象深刻的生物学活动,激发了合成和药物化学家设计和综合药物的下一代。此外,放线菌具有通过发酵技术实现天然产物的优势。
越来越高的耐多药 (MDR) 病原体水平迫使人们发现新的生物活性化合物。为此,首次从埃及 Kafr El Sheikh 的黑沙滩分离出两种放线菌菌株,即灰红链霉菌和罗氏链霉菌,该地区是几家大型养鱼场的所在地。通过表型、生化和 16S rRNA 序列协议对分离株进行了鉴定。这两种菌株都对三种严重的 MDR 病原体表现出强大的抗菌活性:枯草芽孢杆菌、肠炎沙门氏菌和铜绿假单胞菌。使用气相色谱-质谱 (GC-MS) 鉴定了分离株滤液的生物活性化合物。对于 S. griseorubens ,可检测到的抗菌化合物是己酸、2-乙基-、2-乙基己基酯、正癸烷、十六烷酸甲酯、苯乙酸、蓖麻油酸和对羟基苯甲酸乙酯,而 S. rochei 则分泌十七烷、2,6-二甲基-、苯乙酸、邻苯二甲酸二丁酯、二十八烷、二十六烷和维生素 A 醛。这些结果强烈鼓励使用这些环保分离物作为生物防治剂,以对抗攻击养鱼场的 MDR 病原体。
1 墨西哥圣路易斯波多西自治大学医学院免疫学系,圣路易斯波多西 78290,圣路易斯波多西,墨西哥; r.sanchez@ttuhsc.edu (RS-G.); diana.alvarado@uaslp.mx(DLA-H.); rgonzale@uaslp.mx (RG-A.) 2 德克萨斯理工大学健康科学中心埃尔帕索保罗 L. 福斯特医学院分子与转化医学系,美国德克萨斯州埃尔帕索 79905 3 牙科学院牙髓病学研究生课程; ana.amaro@uaslp.mx(AMG-A.); veronica.mendez@uaslp.mx (VM-G.) 4 墨西哥社会保障研究所-IMSS 萨卡特卡斯生物医学研究部,萨卡特卡斯 98000,墨西哥萨卡特卡斯; bruno.rivas@imss.gob.mx 5 墨西哥圣路易斯波多西自治大学牙科学院基础科学实验室,圣路易斯波多西 78290,圣路易斯波多西,墨西哥; apozos@uaslp.mx 6 分子生物医学系,墨西哥城 07360,墨西哥,墨西哥 * 通信地址:marlen.vitales@uaslp.mx † 为了纪念学生 Janeth Araujo Pérez,本文的作者是她硕士论文的一部分。
简介:洪水可能导致土壤中的微生物种群从一个区域转移到另一个区域。放线菌是一种土壤微生物,由于其产生次级代谢物的能力,其商业价值最高。这项研究旨在阐明从洪水和未洪水区域分离的放线菌的抗菌活性。方法:土壤样品是从吉兰丹州达蓬市的洪水泛滥地区和凯兰丹耶利(Jeli)的未洪水地区收集的。使用三种分离方法分离放线菌;超声处理,离心和氯胺T。根据其生长模式(孢子形成),菌落颜色,空中和底物菌丝色以及生长培养基中的可溶性色素形成,筛选了分离的菌株的形态特征。在形态上不同的菌株针对大肠杆菌和白色念珠菌的抗菌和抗真菌活性进行了测试。结果:从土壤样品中分离出970个放线菌菌株(来自洪水的570个菌株和未淹没土壤的400株)。在形态上只有281个菌株是不同的。三十个放线菌菌株的抗菌活性和抗真菌活性。其中十七个抑制了至少一种测试微生物。结论:总而言之,我们的观察结果表明,从洪水泛滥的地区获得的土壤样品显示出各种各样的放线菌,从其形态学特征可以明显看出。这一发现表明,与非洪水土壤面积相比,洪水泛滥的土壤区域具有更高的放线菌。此外,我们发现57%的测试放线菌菌株对至少一种测试有机体表现出活性,表明它们的未来研究潜力。马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7