摘要:功率变压器在电能的有效和可靠分布中起关键作用。及时检测和诊断变压器中的故障对于预防昂贵的停机时间至关重要,确保安全和维持电力系统的完整性。变压器中故障识别的传统方法通常依赖于手动检查和定期测试,这可能是耗时的,劳动的,并且容易受到人为错误。机器学习(ML)技术提供了有前途的解决方案,用于自动化故障检测和功率变压器中的诊断过程。近年来,机器学习(ML)技术已成为自动化故障检测和功率变压器诊断过程的有希望的工具。mL算法可以分析从变压器传感器收集的大量数据,以识别指示各种故障的模式,包括绕组故障,绝缘降解和过热。通过利用ML,公用事业和运营商可以朝着预测和主动的维护策略迈进,最大程度地降低了灾难性失败的风险并优化资产绩效。本文对应用ML算法在功率变压器中的故障识别中的最新进步进行了全面综述。它探讨了各种ML技术,包括受监督和无监督的学习,强化学习和深度学习,突出了它们在变形金刚故障检测中的优势和局限性。本文讨论了数据可用性,模型的解释性和概括,以应对这些挑战并解锁ML在增强电力系统的可靠性和效率方面的全部潜力。
摘要:航空航天业越来越多地采用机电驱动系统,因此需要可靠的诊断和预测方案来确保安全运行,尤其是在关键的安全关键系统(例如主飞行控制)中。此外,如果在预测性维护框架中实施预测方法,则可以提高系统在生命周期内的可用性,从而降低成本。在本文中,将介绍一种已经提出的算法的改进,该算法的范围是预测机电执行器中电机的实际退化状态,并提供温度估计。该目标是通过使用适当处理的反电动势信号和简单的前馈神经网络来实现的。可以以较小的误差实现对电机健康状况的良好预测。