引言。量子振幅的复相位在量子算法[1-6]和量子传感[7]中起着至关重要的作用。许多算法需要测量两个量子态之间的相对相位[8-17]。用于此目的的常见子程序是 Hadamard 检验,它通过干涉将相位信息转换为概率[18]。尽管实验取得了令人瞩目的进展,但由于实现所需的受控酉运算的挑战,Hadamard 检验在大多数应用中仍然遥不可及。在本文中,我们提出了一种替代方法来确定某些状态之间的复重叠,该方法不使用辅助量子位或全局受控酉运算。与其他无辅助方案 [12,19] 不同,我们的方法不需要准备与参考状态的叠加,而叠加极易受到噪声的影响[20-25]。我们的方法不是基于干涉,而是基于复分析原理。所提出的方法适用于(广义)Loschmidt 振幅形式的重叠
成瘾的激励-敏化理论 (IST) 于 1993 年首次发表,该理论提出:(a)大脑中脑边缘多巴胺系统介导对成瘾药物和其他奖赏的激励动机(“想要”),但不介意在服用这些药物时产生享乐影响(喜欢);(b)一些人容易受到药物引起的中脑边缘系统长期敏化的影响,这种敏化会选择性地放大他们对药物的“想要”,而不会增加他们对同一种药物的喜欢。在这里,我们描述了 IST 的起源并评估了它 30 年后的地位。我们将 IST 与其他成瘾理论进行了比较,包括对手过程理论、成瘾习惯理论和冲动控制受损的前额叶皮质功能障碍理论。我们还讨论了多年来对 IST 的批评,例如渴求在成瘾中是否重要以及成瘾是否可以被描述为强迫性。最后,我们讨论了几种当代现象,包括激励敏感化在行为成瘾中的潜在作用、接受药物治疗的帕金森病患者中出现的类似成瘾的多巴胺失调综合征、注意力捕获和趋近倾向的作用、以及不确定性在激励动机中的作用。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要 CRISPR 相关转座子 (CAST) 会将 Cas 基因纳入 RNA 引导的转座。CAST 在基因组数据库中极为罕见;最近的调查报告称,Tn7 样转座子会将 IF、IB 和 VK 型 CRISPR 效应子纳入。在这里,我们通过对宏基因组数据库进行生物信息学搜索来扩展已报告的 CAST 系统的多样性。我们发现了所有已知 CAST 的新架构,包括级联效应子的新排列、新的自靶向模式和最小 VK 系统。我们还描述了已将 IC 型和 IV 型 CRISPR-Cas 系统纳入的新 CAST 家族。我们对非 Tn7 CAST 的搜索确定了将 Cas12a 纳入水平基因转移的推定候选者。这些新系统揭示了 CRISPR 系统如何与转座酶共同进化并扩展了可编程基因编辑工具包。
研讨会针对生物学,生物医学研究,健康科学和相关领域的学生和专业人员,他们有兴趣学习和共享基因组学,宏基因组学和人类微生物组的概念,工具和研究结果。研讨会将通过理论讲座和研讨会以及生物信息学和生物统计学中的实践动手会议来培训该领域最先进的分析方法的参与者。几次会议将用于培训用于使用集成微生物基因组系统(IMG)的培训,这是美国DOE联合基因组研究所(加利福尼亚州伯克利)开发的数据库和分析平台,以综合研究基因组和Metagenomes。IMG系统将由JGI的Microbial Genomics&Metagenomics Scientific Program(负责IMG开发的小组)的Natalia Ivanova博士和Rheka Seshadri博士提出。
Michael BASSIK 高彩霞 Pietro GENOVESE 星野淳 秋津堀田 许爱龙 柯亨范 Henry KIM Silvana KONERMANN 智二 真尾圭二 西田宏 西濱修 濕木司 大森秀之 冈野秀之 Leopold PARTS 秦文宁 斋藤弘英 斋藤诚 佐佐木惠梨香 佐藤森敏 Virginijus SIKSNYS 矢千江望 山本隆 游佐耕介
成瘾的激励-敏化理论 (IST) 于 1993 年首次发表,该理论提出:(a)大脑中脑边缘多巴胺系统介导对成瘾药物和其他奖赏的激励动机(“想要”),但不介意在服用这些药物时产生享乐影响(喜欢);(b)一些人容易受到药物引起的中脑边缘系统长期敏化的影响,这种敏化会选择性地放大他们对药物的“想要”,而不会增加他们对同一种药物的喜欢。在这里,我们描述了 IST 的起源并评估了它 30 年后的地位。我们将 IST 与其他成瘾理论进行了比较,包括对手过程理论、成瘾习惯理论和冲动控制受损的前额叶皮质功能障碍理论。我们还讨论了多年来对 IST 的批评,例如渴求在成瘾中是否重要以及成瘾是否可以被描述为强迫性。最后,我们讨论了几种当代现象,包括激励敏感化在行为成瘾中的潜在作用、接受药物治疗的帕金森病患者中出现的类似成瘾的多巴胺失调综合征、注意力捕获和趋近倾向的作用、以及不确定性在激励动机中的作用。
针对 PARP 进行化疗放射增敏的 IJROBP 肿瘤扫描:机遇、挑战和未来之路 作者:Henning Willers 医学博士和、Mechthild Krause 医学博士 @、Corinne Faivre-Finn 医学博士、哲学博士*、Anthony J. Chalmers 医学博士、哲学博士 # & 美国马萨诸塞州波士顿哈佛医学院麻省总医院 @ OncoRay – 国家肿瘤放射研究中心、医学院和大学医院 Carl Gustav Carus、德累斯顿工业大学、德累斯顿亥姆霍兹中心 - 罗森多夫、德国德累斯顿 *曼彻斯特大学、曼彻斯特学术健康科学中心、克里斯蒂 NHS 基金会、英国 # 格拉斯哥大学癌症科学研究所,英国格拉斯哥 通讯作者:Henning Willers 医学博士,马萨诸塞州总医院放射肿瘤科,马萨诸塞州波士顿 Fruit Street 55 号02114。电话:617-726-5184,hwillers@mgh.harvard.edu 标题:PARP 靶向放化疗 COI:HW – NCI,研究支持;MK – NCI,研究支持。CFF - 英国癌症研究中心有限公司、阿斯利康公司、NIHR、利兹大学、约克郡癌症研究中心、克里斯蒂 NHS 基金会信托,研究支持;阿斯利康、Elektra,差旅费;AJC - 医学研究委员会研究基金、英国癌症研究中心放射研究中心卓越中心,研究支持 资金:部分资金由美国国立卫生研究院国家癌症研究所资助,资助编号为 U01CA220714(HW、MK)。数据共享:N/A
在上述改进领域,ATCC采取了一步,通过CRISPR/CAS 9基因编辑创建了高敏机病毒生产细胞系。通过消除干扰素响应途径并通过删除/下调促凋亡基因来提高VPC的生存,从而提高病毒颗粒产量的设计策略,我们采用了两种方法。第一个是利用这样一个事实,即细胞依靠干扰素引起的途径作为对病毒感染的防御。干扰素信号传导的主要效应因子是通过STAT1蛋白。磷酸化和STAT1的产生自二聚体诱导该细胞内信号传导蛋白转移到细胞核上,从而导致许多细胞通过细胞产生许多抗病毒,抗增殖性和免疫调节反应。因此,从此
抽象T-LAK原始的蛋白激酶(TOPK)过表达是多种癌症的特征,但在大多数表型正常组织中都没有。因此,Topk表达效果和靶向TOPK靶向药剂的发展增强了对目标疗法发展的未来潜力的希望。在本文中提出的结果证实了TOPK作为治疗实体瘤的潜在目标,并证明了与放射治疗结合使用时TOPK抑制剂的效率(OTS964)。使用H460和CALU-6肺癌异种移植模型,我们表明,TOPK的药物抑制作用增强了分馏辐射的效率。此外,我们还提供了体外证据表明,在S阶段,TOPK在迄今为止扮演着未知的作用,表明TOPK耗竭会在复制应力和外源性DNA损伤的条件下增加叉子的失速和塌陷。显示TOPK的瞬时敲低可损害叉子失速中的恢复,并增加与H460肺癌细胞中复制相关的单链DNA灶的形成。我们还表明,TOPK与CHK1和CDC25C直接相互作用,这是检查点信号传导路径中的两个关键参与者在复制叉倒塌后激活。因此,这项研究提供了对TOPK活性支持癌细胞存活的机制的新见解,从而促进了对复制应力和DNA损伤的响应检查点信号传导。