众筹已成为替代金融行业中一种可行的工具,用于补充政府和银行投资无法覆盖的项目(包括可再生能源)的融资。然而,关于发展中国家(尤其是非洲)的众筹文献仍然很少,人们对其从借贷(众筹)或投资角度(而不是捐赠或慈善)为可再生能源融资做出重大贡献的潜力知之甚少。在本文中,我们以西非加纳为例,通过调查发展中国家背景下的群体认知,围绕众筹的机制和动态进行了闭环研究。我们采用了以集体行动、社会证明、说服、网络和信号理论为基础的综合文献综述,并辅以对加纳家庭散户投资者的批判性焦点小组访谈,以提炼与可再生能源众筹有关的关键问题和担忧。然后,我们根据研究结果提出了一个概念框架。我们的研究结果表明,可再生能源和可供大众选择的投资替代品之间的财务回报存在不公平的竞争环境。因此,众筹领域需要精心设计,以提高非金融属性的吸引力,例如开发商/筹款人的声誉和项目可行性,以进一步加强项目经济效益。此外,对众筹平台安全性和易用性的看法也得到了强调,前者是更广泛的银行或金融系统的挑战。总体而言,本文强调需要社会认同和质量信号来吸引家庭投资者。建议进一步研究此类发展中市场集体行动的动机。
1 我们不使用 Berger 和 Packard 的基于潜在狄利克雷分析 (LDA) 的方法,因为它提取了最流行 (常见) 的主题 (维度),例如词束。LDA 方法在新产品创意的背景下可能会出现问题,因为 LDA 可能会将新颖和独特的词归类为“错误”。成功的新产品创意往往是新颖或独特的 (Dahl and Moreau 2002;Toubia 2006)。在众包创意竞赛中,在创意级别而不是主题级别捕捉非典型性的指标可能更胜一筹,因为它不会筛选出这些新颖或独特的创意。
Kobayashi Kazuyoshi,Kazutoshi教授综合电路,电力电子和量子计算机Kobayashi Kazuyoshi,Kazutoshi教授综合电路,电力电子和量子计算机
当前的心理功能,等同于体格检查和补充。这是对通过对话方法进行的大脑/思维的行为检查,结构化但不是机械的(Morrison,1995)2。•当前的床边教学和MSE技能评估
人工智能 (AI) 是设计为像人类一样思考和行动的机器。将 AI 放入虚拟世界,它们就被称为 AI 代理,它使用从训练中获得的知识在世界中执行任务。虚拟世界中的 AI 代理只能在复杂度和多样性有限的环境中使用专门的模型执行一组狭窄的任务。一个需要代理不断学习和适应各种开放式任务并使用先前获得的知识来确定下一步行动的丰富世界将使代理无能为力。为了研究用于指导代理执行 Minecraft 中的基本任务的 AI 教学方法,以确定哪种 AI 教学方法会产生最佳效果,进行了系统的文献综述,提取了 57 篇论文并确定了适合 AI 代理训练方法和功能的主题和子主题。这是为发现可以实施哪些 AI 训练方法,使代理能够在复杂而丰富的世界中执行任务,从而促进基于游戏的学习。研究发现,将强化学习 (RL) 方法与有效的奖励系统完美结合,可为代理提供必要的知识,使其能够在更复杂的层面上执行任务。RL 集成了一系列独特的方法,例如牛顿动作建议 (NAA)、行为克隆 (BC)、视频预训练 (VPT)、人类演示和自然语言命令,以实现特定目标。这意味着可以通过建立一个深思熟虑的框架来教导代理在复杂的环境中执行开放式任务,该框架涉及如何在各个领域教导代理,从而有可能通过基于游戏的学习将这些教导融入现实世界。关键词:基于游戏的学习;社会 5.0 教育;我的世界强化学习;AI 代理;训练 AI 代理