摘要。在Exascale计算时代,具有前所未有的计算能力的机器可用。使这些大规模平行的机器有效地使用了数百万个核心,提出了一个新的挑战。需要多级和多维并行性来满足这种挑战。粗粒分量并发性提供了一个差异的并行性维度,该维度通常使用了通常使用的并行化方法,例如域分解和循环级别的共享内存方法。虽然这些主教化方法是数据并行技术,并且它们分解了数据空间,但组件并发是一种函数并行技术,并且分解了算法MIC空间。并行性的额外维度使我们能够将可扩展性扩展到由已建立的并行化技术设置的限制之外。,当通过添加组件(例如生物地球化学或冰盖模型)增加模型复杂性时,它还提供了一种方法来提高性能(通过使用更多的计算功率)。此外,货币允许每个组件在不同的硬件上运行,从而利用异质硬件配置的使用。在这项工作中,我们研究了组件并发的特征,并在一般文本中分析其行为。分析表明,组件并发构成“并行工作负载”,从而在某些条件下提高了可扩展性。这些通用考虑是