光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
I. i ntroduction t wo-photon吸收(TPA)成像吸引了许多学科的许多兴趣,例如生物学,医学,材料和纳米技术[1] - [4]。tpa固有地是一个非线性过程,其中通过同时吸收两个光子来实现从基态到激发态的转变。这启用了独特的微观技术,即两光子荧光显微镜[1],可以在复杂的生物样本中进行更深入的渗透和更好的三维分辨率[5]。最近,TPA的非线性响应探索了半导体中的非线性响应,尤其是在光dectortor中[6] - [8]。与晶体中的其他光学非线性过程不同,例如第二次谐波,KERR效应,半导体中的TPA可以在时间门控中超快[7],对时间相变化和极化不敏感[9],为成像目的提供了独特的机会[9]。例如,已经证明类似于光学相干断层扫描(OCT)配置的TPA成像[10]对时间和空间湍流不敏感[9],该[9]可用于通过不透明的散射介质进行成像[11]。超过三维中级成像[12],可以使用非排效的TPA获得,其不冷的GAN光电二极管具有与传统的液态硝基冷却的HGCDTE(MCT)检测器相当的效率[8] [8],在其中扩展了Nondegenerate TPA,可以扩展到探测范围,并延伸到辅助范围中。超过三维中级成像[12],可以使用非排效的TPA获得,其不冷的GAN光电二极管具有与传统的液态硝基冷却的HGCDTE(MCT)检测器相当的效率[8] [8],在其中扩展了Nondegenerate TPA,可以扩展到探测范围,并延伸到辅助范围中。
摘要。三维(3D)成像对于理解复杂的生物学和生物医学系统至关重要,但是活细胞和组织成像应用仍然面临着由于成像速度的限制速度和强烈散射而面临的挑战。在这里,我们提出了一种独特的相调节刺激的拉曼散射断层扫描(PM-SRST)技术,以实现细胞和组织中的无标记的3D化学成像。为了完成PM-SRST,我们使用空间光调节器来电子方式操纵沿针头贝塞尔泵束的聚焦Stokes束进行SRS层析成像,而无需进行机械Z扫描。我们通过实时监测以8.5 Hz体积速率的水中的三键珠的3D布朗运动以及对MCF-7细胞中乙酸刺激剂的即时生化反应,证明了PM-SRST的快速3D成像能力。此外,将贝塞尔泵束与更长的波长stokes梁(NIR-II窗口)相结合,在PM-SRST中提供了出色的散射弹性能力,从而在更深的组织区域中可以快速断层扫描。与传统的点扫描相比,PM-SRST技术在高度散射介质(例如聚合物珠幻影和诸如猪皮肤和脑组织等生物学)的成像深度方面提供了〜双重增强。我们还通过观察氧化氘分子到植物根中的动态扩散和摄取过程来证明PM-SRST的快速3D成像能力。开发的快速PM-SRST可用于促进代谢活性的无标签3D化学成像以及活细胞和组织中药物输送和治疗剂的功能动态过程。