作为一名盲目的研究人员,我完全依靠声音来分析我的数据并执行我的研究计划。到此为止,我活跃于一个协作中,该协作正在探索数据SONIFILITION(将数据转换为声音)以增强,验证和加速发现。我们计划的范围不仅限于使盲人和视觉障碍的研究人员能够为以前无法访问的研究领域做出贡献。相反,我们还考虑使用新的多模式方法,这些方法利用声音的特性来解决现代天体物理学趋势所带来的主流挑战。使用“现实生活”示例,我描述了我们如何显示时间序列数据,光谱和多维数据集,这些数据集映射到各种声音特征,例如音高,振幅,波形,波形,脉搏重复速率,音调质量,扭曲质量和失真和失真和失真和噪声,以提供有关测量不确定性的附加信息。我讨论了数据SONIFIRATION在高红移星系研究中的应用,以及我们协调的多波长观察计划以检测和跟进快速瞬态事件。最后,我概述了涉及触摸屏和触控板方法的当前研究方向,以检查散点图(非线性)数据表示,基于形状的识别以及使用合并的加权谐波来呈现多维数据集中的信息内容。
碳水化合物,生物细胞中必不可少的有机分子,在医学,农业,生物技术,材料设计和工业中具有多种应用。了解它们的结构和功能可能有助于例如,具有改善营养和化学特性的新作物变异的发展。该项目着重于3D分子建模,以研究碳水化合物聚合物的化学和物理性质。通过在3D中组装分子并使用计算工具分析它们,该项目旨在确定所研究分子的最稳定构象。结果表明,碳水化合物分子在增加聚合程度时显示出更高的结构动态行为。短期最小化后,单糖分子可以获得稳定的构象。但是,较长的多糖需要很长时间才能获得稳定的构象。在单糖的情况下,只有糖环获得稳定的构象,而多糖具有糖苷键。糖苷键的二面性PHI和PSI角在不同的聚合物中有所不同。它还揭示了三维空间和散点图中分支和线性聚合物之间的结构差异,以及键角之间相关性的模式。需要进一步的研究来验证这些发现。碳水化合物聚合物构象的研究在生物技术和生物医学中具有重要的应用,本报告旨在为扩大该领域关键词中的知识做出贡献
图 1. 纸质评估与 Braincheck 评估的散点图。共有 21 名参与者完成了纸笔版 Stroop 测试和 BC 版 Stroop 测试。将 BC Stroop 反应时间与纸质 Stroop 分数进行比较,得出的 Pearson 相关系数为 -0.74。较高的纸质 Stroop 分数通常与较快的 BC Stroop 反应时间相关。共有 21 名参与者完成了纸笔版数字符号替换测试 (DSST) 和 BC 版。将纸笔分数与 BC 反应时间进行比较,得出了强烈的负相关性 (r= -0.67)。较高的纸质 DSST 分数通常与较快的 BC DSST 反应时间相关。21 名参与者完成了纸笔版 Trails A/B 测试和 BC 版。对于 Trails A (r=0.86) 和 Trails B (r=0.86),两个版本之间存在很强的相关性。这意味着,每个版本的测试完成时间之间存在很强的相关性。20 人完成了 Matrix 测试的纸笔版和 BC 版。将纸笔版的正确题目数量与 BC 版的正确题目数量进行比较,得出 r 为 0.75。这意味着,两个版本的测试和正确题目数量之间存在很强的正相关性。
图 6:基于生成的编码性能。对于每个单独的微电极单元,我们基于三个不同的特征表示拟合三个编码模型:z -、w - 和 CLIP 潜在表示。因此,我们拟合了 3 × 960 个独立编码器,从而得到 3 × 960 个预测神经响应,因为 V1、V4 和 IT 分别有七个、四个和四个微电极阵列(每个 64 个单元)(即 V1 中 7 × 64 = 448,V4 中 4 × 64 = 256,IT 中 4 × 64 = 256)。散点图在 X 轴上显示一个编码模型的预测-目标相关性 (r),在 Y 轴上显示另一个编码模型,以研究两者之间的关系。每个点代表一个建模微电极单元在两个编码模型方面的性能(因此,每个图 960 个点)。负相关值设置为零。对角线表示两种模型的性能相同。Bonferonni 校正的 α = 5 . 21e − 5 的临界 r 值分别为人脸 ( df = 100 ) 和自然图像 ( df = 200 ) 的 r = 0 . 3895 和 r = 0 . 2807,用阴影区域表示。很明显,w 潜在值优于 z 潜在值和 CLIP 潜在值,因为大多数点位于 w 轴方向(对角线上方)。星号表示基于阴影区域外的数据点的每个感兴趣区域的平均相关系数。
简介:为了保持空气置换体积描记器 (BOD POD) 日常体积和质量测量的准确性和可靠性,我们开展了质量保证流程。鉴于准确估计体重和体积对确定身体成分的重要性,本方法学研究的目的是进一步检验校准方法,并在整个潜在测量范围内独立确定质量和体积测量的线性和可靠性。方法:使用 BOD POD 型号 2000A(Life Measurement Inc. (LMI),美国加利福尼亚州康科德)对质量(依次添加已知质量,范围从 10 到 30 千克)范围和体积(依次添加已知体积的气球,范围从 49.900 升到 118.40 升)进行常规校准程序。绘制了实际(已知)与预测(测量)质量和体积值之间的散点图以及偏差和 95% 一致性界限图以说明一致性,并使用配对 t 检验来确定体积之间的显著差异。结果:结果表明,对于 10-30 千克之间的所有质量测量,已知质量和测量质量是一致的。对于所有体积测量,预测(测量)体积与实际(已知)体积的差异最小为 0.2 升,最大为 0.9 升。实际(已知)(平均值±SD=65.1±35.9 升)与预测(测量)之间存在差异(64.7±35.8
图1:(a)神经数据集中的试验数量的增长速度较慢,同时记录的神经元和采样行为条件的数量。散点图颜色对应于序数的年度出版年度(请参阅传奇)。灰度热图显示了协方差估计的最坏情况误差缩放[92•] - 具有N神经元和C条件的数据集的轮廓为O(NC Log NC)。深色阴影对应于较大的错误。(b)静态(顶行)和动态(底行)神经反应中试验变异性的低维可视化。左,在两个条件下的平均试验(蓝色和红色)。在动态设置中,神经频率沿着一维曲线进化,按时间参数。在静态设置中,响应是隔离点的频率空间。中间,相同的响应,但在每个维度中示出了独立的单试变量。对,相同的响应具有相关变异性。顶部面板中的正相关是“信息限制”,因为它们增加了两个响应分布之间的重叠,从而降低了这两种条件的可区分性(例如,参见,例如[2])。在底部面板中,神经反应幅度的相关性幅度相关性导致轨迹优先沿特定维度拉伸或压缩,从试验到试验(请参阅[102•]有关适合这种简化结构的模型)。
主要抑郁症(MDD)的治疗通常涉及抗抑郁药,但对初始疗法的无反应仍然是一个重大的临床和经济负担。这项研究旨在评估13种常见的抗抑郁药的比较疗效和成本效益,涵盖4种药物类别:SSRIS,SNRIS,NASSAS和TCAS。通过使用机器学习和模拟患者数据,我们在两年内对无响应率进行了建模,从而突出了每种药物的累积风险轨迹。这项研究还涉及无响应率与估计的医疗保健成本之间的直接相关性,从而有助于抗抗抑郁症的经济含义的见解。分析揭示了各个类别的无响应模式,SSRI表现出最低的累积风险和成本变化。相反,纳入和TCA类表现出较高的无响应率,导致更大的财务压力。视觉表示,包括带有置信区间的线图,条形图,散点图和盒子图,提供了风险分布和经济影响的直观分解。这项研究的主要目标是指导临床医生和决策者选择具有成本效益和有效的抗抑郁药,最终改善患者的结果,同时最大程度地减少不必要的医疗保健支出。本研究通过将统计建模与视觉分析整合在一起,以解决MDD处理中临床疗效和经济可持续性的双重挑战。主题领域future工作将集中于合并现实世界中的人口统计和临床数据,以增强发现结果的精确性和适用性。
抽象的气氛温度是气候变化的基本指标,直接影响生态系统,水资源和人类生计。对温度趋势的研究对于理解全球变暖的影响以及制定环境可持续性和气候适应的策略至关重要。这项研究的目的是研究气候变化的综合性空气温度的动力学,以及以Mykolaiv City和Mykolaiv地区为例,影响水资源状况的主要因素之一。研究方法涉及观察,比较和类比,分析,合成和泛化。此外,通过使用回归分析,使用Microsoft EXVOL和数学建模进行了研究。方法涉及构建统计模型以基于一个或多个自变量预测因变量。通过散点图,回归线和置信区间可视化从回归分析中得出的发现,从而可以清楚地解释趋势和模式。在1991 - 2024年期间,Mykolaiv区域的平均年温度升高1.2°C,其增长率是全球速率的三倍。在1998年(40.1°C)中记录了最高温度,2006年(-25.9°C)的最低温度,近年来(2023-2024)已成为整个观察期的温暖EST。因此,数据表明在分析期间,温度高于25°C的天数稳定增加。夏季显示最大的温度:八月的平均最高温度达到+29.6°C,并且每年的炎热天数正在稳步增加。这可能是全球变暖和气候变化的结果。然而,在一些年内,炎热日的数量可能低于趋势值,这表明自然波动以及其他气候因素的可能影响。通常,该图显示出炎热天数增加的明显趋势,这是该地区气候变化的重要指标。
摘要:目的:本研究的目标如下:比较使用 CRISPR 改造的微生物降解未减排污染物的效率与自然产生的微生物的效率。这些污染物包括塑料、重金属、杀虫剂和 PCB。本研究旨在确定 CRISPR-Cas9 进行的基因操作是否可以提高这些微生物的降解潜力,尤其是在污染场地的环境条件下,污染物难以去除。目标:本研究回答的主要问题是确定通过 CRISPR 对微生物菌株进行的修饰与天然菌株相比在多大程度上提高了生物降解效率。第二个目标是确定污染物类型对微生物降解的影响,以及研究 CRISPR 修饰数量与生物降解效率之间的相关性。方法:总共通过对天然或通过 CRISPR 技术进行基因改造的微生物菌株进行实验测试获得了 220 个响应。通过在实验室试验中量化污染物在一定时间内的质量减少来确定生物降解的效率。所分析的化学物质包括塑料、重金属、农药和多氯联苯 (PCB)。研究中使用的检验包括方差分析、Kruskal 和 Wallis 检验、回归检验和卡方检验。使用 SPSS 23 版进行统计分析,并以箱线图的形式对这些结果进行数据可视化,用于方差分析和 KW,以带有回归线的散点图的形式进行回归分析,以条形图的形式进行卡方检验。然后,这些数字提供了根据不同微生物菌株和污染物类型对生物降解性能的更好比较。回归分析还揭示了使用图形表示生物降解效率与 CRISPR 修饰次数的关系。结果:基于方差分析和 Kruskal-Wallis 检验的分析表明,降解效率
图 1 CT26 细胞中白蛋白摄取的特征。(A)将细胞与 FITC 标记的白蛋白一起孵育。通过流式细胞术测定 FITC 阳性细胞(散点图,R2)和平均 FITC 荧光强度(条形图)(ex/em:488/530 nm,荧光强度标准化为自发荧光对照)。(B)通过流式细胞术测定内吞抑制剂 M b CD、CHP 和 EIPA(1 小时预处理)对 3 小时后 FITC 标记白蛋白摄取的影响。(A)和(B)中的值是三个独立实验的平均值 SD。通过单因素方差分析和 Dunnett 多重比较检验检验统计学显着性(* p < 0.05,** p < 0.01 和 *** p < 0.001)。 (C) 通过共聚焦显微镜验证了 FITC 标记白蛋白 (绿色) 的摄取和三种内吞抑制剂的影响。细胞核 (蓝色) 和膜 (红色) 分别用 DAPI 和 WGA 共染色。图像显示所有三个通道的叠加。 (D) 未经治疗的小鼠的 sc CT26 肿瘤中白蛋白含量的免疫组织化学分析 (用 20 和 63 物镜进行的显微镜检查)。细胞核和白蛋白分别用苏木精 (紫色) 和 3,3 0 -二氨基联苯胺 (棕色) 显影。 (E) 用 16.5 mg kg 1 荧光素标记的马来酰亚胺 (绿色) 治疗 CT26 小鼠。30 分钟和 5 小时后收获肿瘤,然后对细胞核 (DAPI,蓝色) 和血管 (内粘蛋白,红色) 进行免疫荧光染色。使用 40 倍物镜通过荧光显微镜进行评估。图像显示所有三个通道的叠加。使用 Definiens 软件计算每平方毫米的荧光强度(左图中的条形图)。荧光强度值以两个不同肿瘤样本的平均值 SD 表示。