摘要 我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,以及 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还提供了基于量子信息理论的谱信息散度的计算效率更高的松弛方法。对于上述所有任务,除了提出新的松弛方法外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
在本文中,我们介绍了密码套件 Ascon,它提供了带关联数据的认证加密 (AEAD) 和散列功能。该套件由认证密码 Ascon -128 和 Ascon -128a 组成,它们已被选为 CAESAR 竞赛最终组合中轻量级认证加密的首选,还有一种新变体 Ascon -80pq,可以增强对量子密钥搜索的抵抗力。此外,该套件还包括散列函数 Ascon-Hash 和 Ascon-Hasha ,以及可扩展输出函数 Ascon-Xof 和 Ascon-Xofa 。NIST 的建议包括 Ascon -128 与 Ascon-Hash 的组合或 Ascon -128a 与 Ascon-Hasha 的组合。所有方案都提供 128 位安全性,并在内部使用相同的 320 位排列(具有不同的轮数),因此单个轻量级原语足以实现 AEAD 和散列。
空间领域感知的一个基本方面是能够探测和描述目标卫星附近的物体。在地面光学望远镜监测 GEO 卫星的情况下,由于物体的暗淡以及大气模糊和光学系统的衍射极限对角分辨率的限制,这种“近距离物体”(CSO)问题变得具有挑战性。本文介绍了在 AMOS 进行的基于散斑干涉法的 CSO 实验,散斑干涉法是一类允许从一系列短曝光图像中恢复高空间频率信息的技术。散斑干涉法不需要自适应光学 (AO),因此在光线不足以进行被动 AO 且操作激光导星不切实际的情况下仍然有用。
研究人员表示,研究结果意味着急性播散性脑脊髓炎(每百万剂疫苗 0.78 例)和横贯性脊髓炎(每百万剂疫苗 1.82 例)的“绝对风险极小”。他们写道:“任何潜在的急性播散性脑脊髓炎或横贯性脊髓炎风险都应与疫苗接种对预防新冠病毒及其并发症的已知保护作用相权衡。”
肌萎缩侧索硬化症是一种致命的神经退行性疾病,目前尚无治愈方法可以逆转其进展。其主要特征是核蛋白 TDP-43,该蛋白经历了不同的翻译后修饰,导致细胞核功能丧失,细胞质毒性增加。先前的报告表明,致病性 TDP-43 在各种情况下都表现出类似朊病毒的传播。为了推进预防 TDP-43 病理传播的治疗方法,我们研究了致病性 TDP-43 在散发性 ALS 患者淋巴母细胞中的潜在作用。我们使用散发性 ALS 患者的淋巴母细胞系作为致病性 TDP-43 的来源,并使用健康人类细胞(淋巴母细胞、成肌细胞、神经母细胞瘤 SH-SY5Y 或骨肉瘤 U2OS)作为受体细胞,以研究 TDP-43 蛋白病的播散和扩散。此外,我们评估了使用 CK-1 抑制剂靶向 TDP-43 磷酸化以防止病理传播的潜力。本文呈现的结果表明,致病形式的 TDP-43 分泌到散发性 ALS 淋巴母细胞的细胞外介质中,并可以通过细胞外囊泡运输,将 TDP-43 病理传播到健康细胞。此外,在病理细胞中也发现了隧道纳米管,可能参与 TDP-43 的运输。有趣的是,使用内部设计的 CK-1 抑制剂 (IGS2.7) 靶向 TDP-43 磷酸化足以阻止 TDP-43 病理传播,此外,它还具有恢复患者来源细胞中 TDP-43 蛋白稳态的已知作用。
第一单元 傅里叶级数:傅里叶级数简介、不连续函数的傅里叶级数、偶函数和奇函数的傅里叶级数、半程级数 傅里叶变换:傅里叶变换的定义和性质、正弦和余弦变换。 第二单元 拉普拉斯变换:拉普拉斯变换简介、初等函数的拉普拉斯变换、拉普拉斯变换的性质、尺度变化性质、二阶平移性质、导数的拉普拉斯变换、逆拉普拉斯变换及其性质、卷积定理、应用 LT 解常微分方程 第三单元 变系数二阶线性微分方程:方法 已知一个积分、去除一阶导数、改变独立变量和改变参数、用级数法求解 第四单元 一阶线性和非线性偏微分方程:偏微分方程的公式、直接积分解方程、拉格朗日线性方程、查皮特方法。 二阶及高阶线性偏微分方程:具有常系数的 n 阶线性齐次和非齐次偏微分方程。分离变量法解波动和热方程 第五单元 向量微积分:向量的微分、标量和向量点函数、梯度的几何意义、单位法向量和方向导数、散度和旋度的物理解释。线积分、面积积分和体积积分、格林散度定理、斯托克斯散度定理和高斯散度定理 参考文献
罕见的是,接种 Zostavax 疫苗后,患者可能会发生由疫苗株 (Oka) 引起的播散性水痘-带状疱疹病毒 (VZV) 感染。有报道称,在澳大利亚,包括服用低剂量免疫抑制药物的患者在内,都出现了与疫苗相关的致命性播散性 VZV 感染。免疫抑制程度越高,风险就越大。Zostavax 禁用于当前或近期因原发性或后天性疾病或接受过医学治疗而出现严重免疫功能低下状况的人。在接种任何剂量的 Zostavax 之前,都需要进行仔细的预筛查和基于风险的评估。如果合适,该评估应包括医学专家会诊,并可能包括筛查针对 VZV 的既有抗体。在这种情况下,应推迟接种疫苗,直到获得此类建议和/或结果为止。任何患者在接种疫苗 2 至 4 周后出现播散性水疱(类似水痘)皮疹,或感觉不适或发烧,应立即就医,并确保其治疗专业人员了解其最近接种了带状疱疹疫苗。