摘要 近期量子计算机计算小分子基态特性的机会取决于计算拟设的结构以及设备噪声引起的误差。在这里,我们使用数值模拟研究这些噪声量子电路的行为,以估计准备好的量子态相对于通过常规方法获得的基本事实的准确性和保真度。我们实现了几种不同类型的拟设电路,这些电路源自酉耦合簇理论,目的是使用变分量子特征求解算法估计氢化钠的基态能量。我们展示了能量和保真度的相对误差如何随着基于门的噪声水平、核间配置、拟设电路深度和参数优化方法的变化而变化。
图2为直接能量沉积过程中单通道单层熔覆层的外观图及相应时刻的熔池XZ截面和YZ截面图(红色虚线框内为XZ截面,黑色虚线框内为YZ截面)。从图2(a)可以看出,t=0.13时基体处于预热状态,这是为了保证粉末颗粒在熔池中初步完全熔化。由图可知,热源作用于基体时,基体受热比较均匀,热影响区具有很高的对称性,说明高斯热源在数值模型中具有良好的效果。随着金属粉末颗粒进入熔池,熔覆层逐渐形成,熔池最高温度可达3000K左右,如图2(b)所示。
这篇论文是由学者的矿山带给您的,这是密苏里州S&T图书馆和学习资源的服务。这项工作受美国版权法的保护。未经授权的使用,包括重新分配的复制需要版权持有人的许可。有关更多信息,请联系scholarsmine@mst.edu。
摘要Via地面(GND)结构构成设计高性能印刷电路板(PCB)的最有用的元素之一。与VIA的电气连接成为实施各种电子函数的关键常规解决方案。但是,到目前为止,VIA从未用于设计负组延迟(NGD)电路。为了回答这个好奇的问题,本文介绍了有关使用Via Ground的低通NGD功能设计可行性的原始研究。在拓扑描述之后,建立了VIA参数功能的NGD分析。制定了允许合成NGD函数指定功能的通过功能的设计方程式。与商业工具之间的计算和模拟之间的比较验证了开发的NGD理论。正如预期的那样,在一百毫米截止频率上以百秒秒为单位的ngd值在理论模型和仿真之间具有良好的一致性获得。此外,时域分析了通过NGD结构的确认,可以在任意波形输入信号的时间吸收时生成输出信号,显示有限的带宽。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
摘要 隧道掘进机施工过程中涉及的主要问题之一是尾部间隙注浆。该间隙位于隧道衬砌外径和开挖边界之间,并用高压注浆材料填充。本文研究了 FLAC3D 软件中三种不同的间隙注浆建模方法,特别关注注浆材料硬化过程的影响。在第一种方法中,将注浆在注入过程中模拟为液体,考虑 TBM 的推进及其硬化时间,将注浆特性转变为固体注浆的性质。在第二种方法中,在模型中将注浆材料从注入开始时就视为具有固体注浆性质,忽略液相。在第三种方法中,不考虑模型几何中的回填注浆区域,只在盾构末端和已安装管片后方施加注入压力。根据最大地表沉降评估了这三种方法的有效性。这三种方法估算的表面沉降量不同,但第一种方法的结果更接近监测数据。同样作为敏感性分析,在这项工作中,我们研究了液体和固体灌浆材料的弹性模量对表面沉降量的影响,这有助于更准确地了解灌浆混合物的影响。
摘要。本文介绍了为模拟不锈钢 SS316L 定向能量沉积中形成的熔池中的流体流动和传热而开发的数值模型。该模型结合了重要的热量和动量源项。能量源项包括激光能量、相变潜热、对流热损失、辐射热损失、蒸发热损失以及由于熔融颗粒沉积到熔池中而增加的能量。动量源项是由表面张力效应、热毛细(Marangoni)效应、热浮力、相变引起的动量衰减、熔融颗粒动量以及由于蒸发引起的反冲效应引起的。模拟表明,熔池中预测的流动和传热会影响最终的形状和尺寸。在当前采用的工艺参数下,熔池细长、宽而浅,具有凹陷的自由表面和向外的对流。向外流动是由熔池中心的高温主导区域引起的,因此表面张力的温度梯度为负。
○ITHACA,实时高级计算应用程序,是整合已经建立了良好的CSE/CFD开源软件○RBNICS作为新手ROM用户(培训)的教育计划(FEM)。○ Argos A dvanced R educed order modellin G O nline computational web server for parametric S ystems ○ PINA a deep learning library to solve differential equations ○ EzyRB data-driven model order reduction for parametrized problems ○ PyDMD a Python package designed for Dynamic Mode Decomposition ( in collaboration with University of Texas, CERN, and University of Washington)
摘要:本文介绍了一种使用依赖于温度和接触压力的可变摩擦系数对飞机轮胎与粗糙表面接触进行数值模拟的方法。使用滑动装置来评估摩擦系数的这种依赖性。通过热电偶测量整个轮胎横截面的温度扩散。将摩擦生热和温度扩散与数值二维和三维模拟进行了比较。可以获得足够的温度预测。在未来的模拟中,应考虑磨损,以便进行更准确的模拟,特别是在高压和滑动速度的情况下。使用依赖于温度和压力的可变摩擦系数研究了速度为 37.79 节(19.44 米/秒)并处于转弯阶段的滚动轮胎的 3D 有限元模型。数值模拟倾向于预测轮胎胎面在打滑位置滚动几秒钟后的温度,接触区的温度升高到 140 ◦ C。必须进行进一步调查才能获得实验观察到的温度变化。作者想指出,出于保密原因,某些数值数据不能透露。