摘要:Ikorodu打火机终端是尼日利亚拉各斯的重要泻湖港口。但是,港口周围发生的强烈人为活动可能会污染水。这项研究评估了人类暴露于港口周围水的安全性。测定水的样品进行物理化学参数,即:电导率,生化氧需求(BOD),总悬浮固体(TSS),总溶解固体(TDS),pH值,pH,浊度,硬度,硬度,钙,钙,氯化物,氯化物,氯化物,硫酸盐,硫酸盐,硝酸盐,硝酸盐和磷酸盐。此外,分析了重金属,包括铅,锰,铜,镉,镍和铬,并使用其价值来估计潜在的健康风险。还测定了微生物的存在。水样有不可渗透水平的亚硝酸盐,油和油脂以及BOD。除Ni以外,重金属的浓度及其平均每日摄入和平均每日皮肤暴露在可耐受的极限之内。然而,他们的危险商和致癌风险通过摄入和真皮接触超过了可忍受的极限。在水中检测到细菌,大肠菌群和真菌的安全水平。基于这些结果,水可能会使用户面临健康危害。有必要采取政策,以确保人类接触水的安全。
摘要:为实现态势感知的自主化、智能化,本文提出了一种基于分维信息挖掘和多维信息重构的智能态势感知模型。首先,通过对输入的融合信息进行三维重构建立空间态势感知,四维重构完成态势理解,五维重构寻求态势预测,将三级态势估计模型优化为更加鲁棒的态势估计三元模型。结合数据库系统、推理学习机制和多样化的人机界面理念,完成了智能态势感知的基本框架。其次,论证了系统的灵活配置方法。第三,给出了智能态势感知性能指标和多节点一致性的一些基本评价方法。第四,给出了钻井平台典型电磁态势估计算例,对理论进行了说明和验证。最后,对智能态势感知系统下一步建设提出了几点建议。
摘要:为实现态势感知的自主化、智能化,本文提出了一种基于分维信息挖掘和多维信息重构的智能态势感知模型。首先,通过对输入的融合信息进行3D重构建立空间态势感知,4D重构完成态势理解,5D重构寻求态势预测。将三级态势估计模型优化为更加鲁棒的态势估计三元模型。结合数据库系统、推理学习机制和多样化的人机界面理念,完成了智能态势感知的基本框架。其次,论证了系统的灵活配置方法。第三,给出了智能态势感知性能指标和多节点一致性的一些基本评估方法。第四,本文给出了钻井平台的典型电磁态势估计算例,对理论进行了说明和验证。最后对下一步智能态势感知系统的建设提出了几点建议。
练习下表显示了根据各自的时间序列计算的每桶油(x t)对美国通货膨胀(y t)变化效果的动态乘数的估计值,该时间序列是根据各自的时间序列计算的,从1970年第一季度到2022年的最后一个季度(t = 208)。
高频信号传输,低介电常数(D K)和低介电损耗因子(D F)的替代品以取代传统的二氧化硅材料。4 - 6聚酰亚胺(PI)通常被评为合适的候选者,因为其低分子极化性以及出色的热,机械和化学耐药性特征,并且在电信和微电子工业中表现出了理想的前景。7当前,低二型聚合物材料的结构和组成设计主要集中于结构修饰,改进材料制造过程和复合修饰。常规PI的固有介电常数位于约3.5中,但是,通常需要较低的值以最大程度地减少超大尺度集成电路,高频通信天线基板和毫米波雷达的层间介电信号传输的功率耗散和延迟。8 - 11通过减少主链上酰亚胺基团之间的极化,已经研究了许多方法来减少介电常数和PI的介电损失。12 PI聚合物的分子结构在其介电特性中起主要作用。固有偶极矩和
本文尝试从量子透视模型的角度,将法拉第常数用化学核苷酸碱基(AT、G、C和U)表示。首先,将逗号后的法拉第常数的准确值排列成双数(0,96,48,53,32,12,33,10,01,84×10 5 C∙mol −1 )。其次,将这一对十进制数转换成二进制数。第三,在完成这些数的转换过程之后,再将二进制数转换成十进制数。第四,对这些十进制数分别求和。第五,将上述加法过程的总和对应到遗传密码[腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)]。第六,此转换的结果大致对应于尿嘧啶(U)和鸟嘌呤(G)核苷酸碱基,即数字“64”相当于尿嘧啶(U)核苷酸碱基,而近似数字“79”相当于鸟嘌呤(G)核苷酸碱基。第七,将[尿嘧啶(U)和鸟嘌呤(G)]核苷酸碱基转换为[“AG”腺嘌呤(A)和鸟嘌呤(G)]后,此结果不仅与电化学中法拉第常数之间的联系有意义,而且与量子物理学中叠加态对偶位置之间的联系也有意义。第八,在NCBI(美国国家生物技术信息中心)数据库中搜索[“AG”腺嘌呤(A)和鸟嘌呤(G)]序列后,NCBI的搜索结果与家蚕(Bombyx Mori)基因序列“AGAAAAAGGA”相似。它们是具有该序列的蚕遗传学和丝茧膜 (SCM) 基因工程可能性的非常有趣的特定模型生物。第九,这种复杂的天然蛋白质纤维膜由于具有良好的电导性而受到研究界的极大关注。最后,本文不仅揭示了法拉第常数之间的关系
独家产品总和(ESOP)最小化问题长期以来一直对研究界有所了解,因为它在经典逻辑设计(包括测试的低功率设计和设计),可逆逻辑合成和知识发现等方面具有重要意义。但是,对于任意函数的七个变量,尚无确切的最小化方法。本文介绍了一种新型的量子古典杂化算法,可用于最小化不完全指定的布尔函数的确切最小的ESOP最小化。该算法从约束和利用Grover的算法提供的量子加速度构建或构造,从而找到了这些甲壳的解决方案,从而改善了经典算法。与许多现有算法相比,ESOP表达式的编码可导致的决策变量大大减少。这也扩展了确切的最小ESOP最小化的概念,以最大程度地降低将ESOP表达作为量子电路的成本。在作者知识的范围内,这种方法从未出版过。通过量子模拟对该算法进行了完全且未完全指定的布尔函数测试。
前糖尿病是正常血糖和糖尿病之间的一个中间阶段,其特征是葡萄糖代谢受损。通常会反映出葡萄糖耐受性和空腹葡萄糖的存在或两者的存在。根据国际糖尿病联合会(IDF),世界上约3.74亿成年人在2017年患有糖尿病,全球患病率为7.7%。在2045年,将有5.48亿成年人患糖尿病前期,相当于世界人口的8.4%(2)。仅在美国,有8600万年龄≥18岁的成年人患有糖尿病前(7)。在中国的一项全国横断面调查中,成年人中糖尿病的患病率已达到35.7%(8)。70%的患有糖尿病的人最终会患上糖尿病。因此,前糖尿病通常被视为警告信号。但是,大多数患有糖尿病前期的患者通常会忽略这种代谢异常,而忽略了其重要性。因此,了解从糖尿病前期到糖尿病的风险因素在预防或延迟糖尿病及其并发症方面尤为重要。已经认识到,胰岛素抵抗(IR)在许多代谢疾病中起着至关重要的作用,例如代谢综合征,非酒精性脂肪肝疾病(NAFLD),糖尿病和肥胖症(9-12)。ir是糖尿病发展的主要因素之一,因此在糖尿病发育之前鉴定患有IR的个体至关重要。因此,迫切需要一个简单,可重现和可靠的索引来检测IR。高胰岛素优质糖夹仍然是IR测量的黄金标准,但由于其劳动强度,成本和道德问题,它并不广泛地适用于临床实践(13)。研究人员表明,甘油三酸酯 - 葡萄糖指数(TYG)指数由禁食血浆葡萄糖(FPG)水平和甘油三酸酯(TG)的产物组成,并且与Euglycemicy高胰岛素高培养基测试(14,15)相比,识别IR具有高度敏感和特定的IR。近年来,甘油三酸酯葡萄糖体质量指数(TYG-BMI)已作为肥胖相关参数开发。是体重指数(BMI)和TYG指数的乘积。根据最近的一项研究,TYG-BMI可以同时捕获几个临床变量,例如BMI,血糖和脂质ProFE,并且比单独的指数更紧密地反映IR(16)。由于IR在糖尿病发病机理中起重要作用,因此我们假设TYG-BMI可能是糖尿病的有用预测指标。不幸的是,目前关于糖尿病与TYGBMI之间关系的研究是有限的,只有两项研究解决了该主题(17,18)。此外,先前研究TYGBMI与糖尿病之间关联的研究是针对普通人群的。尚未报告糖尿病前期患者,患糖尿病的高风险。因此,为了确定TYG-BMI与从糖尿病前期到糖尿病的风险之间的关系,我们使用已公开的数据进行了回顾性队列研究。
结果:等位基因C和T的等位基因频率分别为72和28%。在主要的遗传模型下,观察到较小的言语等位基因的显着易感关联,其平均言语综合指数(OR = 2.216,p = 0.003,CI(95%)= 1.33–3.69)= 1.33–3.69),平均绩效指数较低(OR = 2.634,P <0.001,CI(CI(955))= 1.51(955) - = 1.51(951)。 IQ-4(OR = 3.159,P <0.001,CI(95%)= 1.873–5.328)。Met-Cleares的载体的体重指数增加(OR = 2.538,P <0.001,CI(95%)= 1.507–4.275),收缩压降低(OR = 2.051,P = 0.012,p = 0.012,CI(95%),CI(95%)= 1.202-3.502),或降低了尿症(或poi = 2. 2. 16,或= 2.16,ci(或= 2.16) (95%)= 1.278–3.657)。在隐性遗传模型下,还检测到智商和BP的几倍降低,并且还检测到T等位基因的存在,BMI的增加。
机械组件和结构的组成结构元件具有复杂的几何形状,导致局部应力/应变集中现象。这些带缺口的结构部件经常受到随时间变化的载荷,这可能导致疲劳裂纹的产生和扩展。在非常特殊的情况下,使用中的载荷路径包括恒幅 (CA) 疲劳循环。然而,在大多数实际情况下,结构部件受到变幅 (VA) 载荷谱的影响。除此之外,疲劳设计问题进一步复杂化,因为一般来说,实际使用中的载荷历史本质上是多轴的。就受到 CA 多轴疲劳载荷的无缺口金属材料而言,对现有技术的检查表明,使用各种设计标准可以达到良好的精度水平 [1] 。然而,尽管设计可靠性如此令人鼓舞,但显然还需要做更多的工作,以便更好地将材料微观结构的影响纳入疲劳设计过程 [2] 。在此背景下,关键问题是具有不同延展性的材料对施加载荷历史的非比例性程度表现出不同的敏感性 [3] 。虽然已经进行了大量工作来研究普通金属材料的多轴疲劳行为,但迄今为止,国际科学界尚未对多轴疲劳行为进行深入研究。