图 eA.1 显示了包含基本逻辑门的各种流行 74xx 系列芯片的引脚分布图。这些有时被称为小规模集成 (SSI) 芯片,因为它们由几个晶体管构成。14 针封装通常在顶部有一个凹口或在左上角有一个点来指示方向。引脚编号从左上角的 1 开始,沿封装逆时针方向排列。芯片需要分别在引脚 14 和 7 处接收电源 (V DD = 5 V) 和接地 (GND = 0 V)。芯片上的逻辑门数量由引脚数量决定。请注意,7421 芯片的引脚 3 和 11 未连接 (NC) 任何东西。7474 触发器具有常见的 D 、 CLK 和 Q 端子。它还具有互补输出 Q 。此外,它还接收异步设置(也称为预设或 PRE )和重置(也称为清除或 CLR )信号。这些都是低电平有效;换句话说,触发器在 PRE = 0 时设置,在 CLR = 0 时重置,在 PRE CLR = = 1 时正常运行。低电平有效
确定施加载荷的位置点,以避免在航空航天应用中使用的薄层中扭曲。了解弯曲梁中中性轴和中心轴的区分的概念。理解用于分析经受扭转的非圆形条开发的类比模型,并分析滚动体和三维体中压力之间产生的应力。单位– I:剪切中心:弯曲轴和剪切中心的公理对称和不对称切片。不对称的弯曲:经受非对称弯曲的梁中的弯曲应力,由于非对称弯曲而导致的直束的挠度。单位– II:弯曲梁理论:绕线应力的Winkler Bach公式 - 局限性 - 校正因子 - 弯曲梁中的宽度应力 - 闭合环,受到链接链路中的浓缩和均匀载荷应力。单位– III:扭转:线性弹性溶液prandtl弹性膜(肥皂膜)类比;狭窄的矩形横截面,空心的薄壁扭转构件,倍数连接的横截面。单元– IV:接触应力:简介,确定接触应力的问题,基于接触应力的解决方案的假设;主压力的表达;计算接触应力的方法,体接触中的身体挠度;在狭窄的矩形区域(线接触)上接触的两个物体的应力(线接触)正常为面积,两个物体接触的应力,正常和切线与接触区域的负载。教科书:1。Boresi&Sidebottom的高级材料力学,Wiely International。2。和较好的J.N.单位– V:介绍三维问题:棱柱形杆的均匀应力拉伸,其自身的重量扭曲恒定横截面的圆形轴,板的纯弯曲。Timoschenko S.P.的弹性理论McGraw,Hill Publishers 3 Rd Edition参考书:1。材料的高级强度由Den Hortog J.P. 2。 Timoshenko的板块理论。材料的高级强度由Den Hortog J.P. 2。Timoshenko的板块理论。Timoshenko的板块理论。
2. 欧洲列车管理系统 (ERTMS)。基于车厢的信号和列车控制系统,旨在取代欧洲所有不同的国家列车控制和指挥系统,这些系统主要基于线路信号。包括 GSM-R 和 ETCS。 3. 全球移动通信系统-铁路 (GSM-R)。用于直接列车控制中心通信的内部移动网络,包括隧道和深路堑内。关键运营铁路人员(特别是列车司机和信号员)之间的高度可靠和安全的通信。该系统使用符合国际公认标准的固定和移动数字连接基础设施组合,并于 2007 年至 2016 年间分阶段用于几乎整个英国干线铁路网络。它取代了旧的模拟无线电网络,后者维护成本高昂,功能有限。 4. 欧洲列车控制系统 (ETCS),一种自动列车保护系统 (ATP),用于取代现有的国家 ATP 系统。 ERTMS 已在部分英国铁路线上部署,但尚未在整个网络中推广。计划逐条路线部署该系统,初步计划涵盖 2019-2029 年期间。
3.6。 div>RS232,RS422和RS485。 div>4。编程。 div>4.1。 div>结构化编程。 div>4.2。 div>汇编语言。 div>4.3。 div>语言C. 5。其他微控制器。 div>5.1。 div>PIC 16F877。 div>5.2。 div>64HC11。 div>5.3。 div>AT89S8252。 div>6。实时系统简介。 div>6.1。 div>实时定义(实时)。 div>6.2。 div>实时系统的示例。 div>6.3。 div>实时设计设计技术。 div>6.4。 div>操作系统简介。 div>6.5。 div><实时内核。 div>7。<实时内核。 div>7.1。 div>调查的循环系统。 div>7.2。 div>由中断管理的系统。 div>7.3。 div>缓冲数据。 div>7.4。 div>邮箱。 div>7.5。 div><消息的发言人。 div>7.6。 div>交通信号灯。 div>7.7。 div>关键区域。 div>7.8。 div>事件标志。 div>7.9。 div>内存管理。 div>7.10。 div>任务管理。 div>7.11。 div>时间管理。 div>8。带有微控制器的项目。 div>
目前,国防部对主要武器系统和信息技术的采购是一个持续多年的线性过程。从固定需求和少量早期设计开始,该过程是为采购支持而构建的,不易修改。多年来,趋势一直是独立的活动和数据源,这导致了冗余流程、沟通不畅、错误和返工。因此,没有通用的实例化方法或分类法来组织、跟踪和共享整个生命周期中的权威技术数据和相关工件。DSM 是国防部系统工程副助理部长办公室 (ODASD(SE)) 的一项持续计划,旨在建立一个综合的权威分类法来解决这一问题。本文继续讨论迄今为止为开发 DSM 分类法所做的工作,作为组织从需求到维持的技术数据的一种手段。还介绍了成功经验、观察结果、挑战和未来工作领域。
- P. Pachowicz,项目,实时系统设计2。ECE 511微处理器 - J.P. Kaps,项目,基于MSP430微控制器的系统3。ECE 611高级微处理器 - H.HoMAYOUN,项目,计算机体系结构仿真工具4。ECE 612实时嵌入式系统 - C. Sabzevari,项目,编程分布式实时系统5。ECE 641计算机系统体系结构 - H.Homayoun,项目,计算机体系结构仿真工具6。ECE 699软件 /硬件代码 - K. GAJ,用VHDL和C 7的SOC设计。< / div>。< / div>ECE 699异质体系结构和绿色计算 - H.HoMayoun,项目,计算机体系结构仿真工具
会议结束时,Robert Mullens 先生代表核能软件管理小组 (NUSMG) 提交了一份由 Wayne Glidden 先生(杜肯照明公司)撰写的简短立场文件。Franklin Coffman 先生(人为因素科科长,办公室